Monday 30 January 2017

Hold the back page: 5 reasons science journalism can be bad for science

Although there's an extremely mixed quality to television science documentaries these days (with the Discovery Channel firmly at the nadir) - and in stark contrast to the excellent range of international radio programmes available - the popular press bombards us daily with news articles discussing science and technology. Both traditional print and online publications reach an enormous percentage of the public who would never otherwise read stories connected to STEM (Science, Technology, Engineering and Mathematics). Therefore these delivery channels and the journalists who write material for them face an immense challenge: how to make science accessible and comprehensible as well as interesting. How well they are doing can be judged by the general public's attitude towards the subject...which is currently not that great.

In November 2016 Oxford Dictionaries stated that their Word of the Year was 'post-truth', which refers to 'circumstances in which objective facts are less influential...than appeals to emotion and personal belief.' Clearly, this is the antithesis of how good science should proceed. Combined with the enormous output from social media, which gives the impression that anyone's opinion is as valid as a trained professionals and you can see why things aren't going well for critical thought in general. Did you know that a Google search for 'flat earth' generates over 12 million results? What a waste of everyone's time and data storage! As they said about Brexit: pride and prejudice has overcome sense and sensibility. Here then are five reasons why popular science journalism, mostly covering general news publications but occasionally dipping into specialist magazines too, can be detrimental to the public's attitude towards science.

1) Most science writers on daily newspapers or non-specialist periodicals don't have any formal science training. Evolutionary biologist Stephen Jay Gould once pointed out that journalists have a tendency to read summaries rather than full reports or scientific papers, thus distancing themselves from the original material before they even write about it. The problem is that an approach that works for the humanities may not be suitable for science stories. We're not critiquing movies or gourmet cuisine, folks!

As an humorous example of where a lack of research has led to a prevalent error,  a 1984 April Fools' Day spoof research paper by American journalism student Diana ben-Aaron was published in 350 newspapers before the original publisher admitted that Retrobreeding the Woolly Mammoth was phoney. One of the facts that ben-Aaron made up (and still remains unknown) is that woolly mammoth had fifty-eight chromosomes. This number is now ubiquitous across the World Wide Web from Wikipedia to the Washington Post, although I'm pleased to see that the National Geographic magazine website correctly states the situation. Clearly, anyone who follows the President Trump approach that "All I know is what's on the Internet" isn't going to get the correct answer.

This isn't to say that even a scientifically-trained journalist would understand stories from all sectors: the pace of advance in some fields is so fast than no-one can afford the time to maintain a sophisticated understanding of areas beyond their own specialism. But it isn't just particular research that is a concern: general concepts and methodology can be ignored or misunderstood; whilst a lack of mathematical training can easily restrict an understanding of how statistics work, with error bars and levels of significance often overlooked or misrepresented.

Related to this ambiguity and margin for error, journalists love to give definitive explanations, which is where there can be serious issues. Science is a way of finding ever more accurate explanations for the universe, not a collection of unchangeable laws (excepting the Second Law of Thermodynamics, of course). Therefore today's breakthrough may be reversed by tomorrow's report of sample contamination, unrepeatable results or other failure. It's rarely mentioned that scientists are willing to live with uncertainty - it's a key component of the scientific enterprise, after all. Yet in the event of an about turn or setback it's usually the scientists involved who get blamed, with accusations ranging from wasting public money to taking funding from something more worthwhile. Meanwhile, the journalist who wrote the original distorted account rarely gets held responsible. As for the one-sided scare stories such as nicknaming GM crops as 'Frankenfoods', this lowers what should be a serious public debate to an infantile level extremely difficult to overthrow.

2) How many science documentaries have you seen where the narrator says something along the lines of “and then the scientists found something that stunned them”? Such is the nature of story-making today, where audiences are deemed to have such short attention spans that every five minutes they require either a summary of the last ten minutes or a shock announcement. This week I saw a chart about bias within major news organisations: both CNN and USA Today were labelled as 'sensational or clickbait'. I've repeatedly read about scientists who were prompted by journalists towards making a controversial or sensational quote, which if published would distort their work but provide a juicy headline. It seems that limiting hyperbole is a critical skill for any scientist being interviewed.

Journalists don't owe invertebrate paleontologists, for example, a free lunch but there is a lot of good professional and occasionally amateur science being conducted away from the spotlight. Concentrating on the more controversial areas of research does little to improve science in the public's eye. Even reporting of such abstract (but mega-budget) experiments as the Large Hadron Collider seems to be based around headlines about 'The God Particle' (nearly six million results on Google) A.K.A. Higgs Boson (less than two million results). Next thing, they'll be nicknaming the LHC ‘The Hammer of Thor' or something equally cretinous. Although come to think of it…

The World Wide Web is far worse than printed news, with shock headlines ('It Was The Most XXX Ever Found - "It Blew My Mind," Expert Says') and over-inflated summaries that would make even lowbrow tabloids blush. Even specialist periodicals are not immune to the syndrome, with New Scientist magazine being particularly at fault. In 2009 it published the silly headline 'Darwin was wrong' which drew the ire of many biologists whilst providing a new form of ammunition for creationists. In 2012 their special 'The God Issue' turned out to contain less than fifteen pages on religion - but then it is meant to be a popular science periodical! In this vein the Ig Nobels seem to get more attention than the Nobel Prizes as journalists look for a quirky man-bites-dog angle to convince the public that a science story is worth reading.

3) Talking of which, journalists want to reach the widest possible audience and therefore looking for human angle is a prominent way to lure in readers. The two most recent Brian Cox television documentary series, Human Universe and Forces of Nature have concentrated on stories around families and children, with the science elements being interwoven almost effortlessly into the narrative.

In print and digital formats this bias means that the focus is frequently on articles that might directly affect humanity, especially medical, agricultural and environmental stories. This puts an unbalanced emphasis on certain areas of science and technology, leaving other specialisations largely unreported. This might not appear bad in itself, but lack of visibility can cause difficulties when it comes to maintaining public funding or attracting private philanthropy for less commercial and/or more theoretical science projects.

Another method used to make science more palatable is to concentrate on individual geniuses rather than team efforts. I assume only a very small proportion of the public know that theoretical physicists do their best work before they are thirty years old, yet the seventy-five year old Stephen Hawking (whose name is now a trademark, no less) is quoted almost every week as if he were Moses. He's well worth listening to but even so, Professor Hawking seems have become a spokesperson for almost any aspect of science the media want a quote on.

4) With competition tougher than ever thanks to social media and smartphone photography, journalists face ever tighter deadlines to publish before anyone else. This can obviously lead to a drop in accuracy, with even basic fact-checking sometimes lacking. For example, a year or two ago I sent a tweet to the British paleopathologist and presenter Dr Alice Roberts that the BBC Science and Environment News web page stated humans were descended from chimpanzees! She must have contacted them fairly rapidly as the content was corrected soon after, but if even the BBC can make such basic blunders, what hope is there for less reputable news-gathering sources? As with much of contemporary business, the mentality seems to be to get something into market as quick as possible and if it happens to be a smartphone that frequently catches fire, we'll deal with that one later. The Samsung Galaxy Note 7's recent debacle is the gadget equivalent of the BBC error: beating the opposition takes precedence over exactitude.

It's one to thing to define science as striving towards more accurate descriptions of aspects of reality rather than being a series of set-in-stone commandments, but publishing incorrect details for basic, well-established facts can only generate mistrust of journalists by both scientific professionals and members of the public who discover the mistake. Surely there's time for a little cross-checking with reference books and/or websites in order to prevent the majority of these howlers? Having said that, I find it scary that a major media organisation can commit such blunders. I wonder what the outcry would be if the BBC's Entertainment and Arts News page claimed that Jane Austen wrote Hamlet?

5) Finally, there's another explanation that has less to do with the science journalists themselves and more with what constitutes newsworthy stories. Negativity is the key here, and as such science news is swept along with it. For example, the BBC Science and Environment News web page currently has three articles on climate change and animal extinctions, an expensive project technology failure, earthquake news and a pharmaceutical story. Like a lot of political reports, those concerning STEM subjects concentrate on the bad side of the fence. Unfortunately, the dog-bites-man ordinariness of, for example ‘Project X succeeds in finding something interesting' usually precludes it from being deemed media-worthy. The ethos seems to be either find a unique angle or publish something pessimistic.

One tried and tested method to capture attention is to concentrate on scandal and error: science is just as full of problems as any other aspect of humanity. Of course it is good to examine the failure of high-tech agriculture that led to the UK's BSE 'mad cow' disease outbreaks in the 1980s and 90s, but the widespread dissemination of the supposed link between MMR and autism has caused immense damage around the world, thanks to a single report being unthinkingly conveyed as rock-hard evidence.

Bearing in mind that journalism is meant to turn a profit, perhaps we shouldn't be surprised at how misrepresented scientific research can be. It's difficult enough to find the most objective versions of reality, considering all the cognitive bias in these post-truth times. There are no obvious answers as to how to resolve the issue of poor quality science reporting without either delaying publishing and/or employing scientifically-trained staff. The market forces that drive journalism unfortunately mean that STEM stories rarely do science justice and often promote a negative attitude among the rest of mankind. Which is hardly what we need right now!

Sunday 15 January 2017

Devoted to dinosaurs: Joan Wiffen and the role of the amateur scientist

I was recently at a second hand book stall, browsing a first edition of Graeme Steven's Prehistoric New Zealand. The market stall owner told me that she had thumbed through the book and was amazed to learn that New Zealand had any wildlife prior to the moa. This seemingly widespread lack of knowledge about the nation's past is no doubt partially due to the small number of both practitioners and finds, although the state education system cannot be considered blameless. Still, in an age of easily-accessible information via the World Wide Web and the likes of the National Geographic Channel, such gaps do seem rather surprising.

Of course a lack of public knowledge concerning ancient life isn't restricted to New Zealand. I recall several amusing (yes, I know it sounds smug) encounters at London's Natural History Museum, where I discovered that parents of dinosaur-crazed children cannot differentiate giant ground sloths from dinosaurs, let alone bipedal carnosaurs from quadrupedal sauropods.

The poor understanding of New Zealand's past is exacerbated by the low population and correspondingly small amount of funding available. Therefore perhaps it's not surprising that amateurs have made significant discoveries, from the Hamilton Junior Naturalist Club's discovery of a giant penguin fossil at Kawhia to Joan Wiffen, the 'Hawke's Bay housewife' (an epithet that always causes me to grit my teeth) who discovered New Zealand's first dinosaur fossils and much more besides.

I've previously discussed the joys of amateur fossicking from a primarily fun aspect but also mentioned how New Zealand relies on non-professionals. The Kawhia penguin is a case in point, as it would have eroded within a year had it not been discovered. Indeed, I was recently collecting some Pleistocene marine molluscs above a Taranaki river valley, on a steep slope prone to severe flooding. These fossils had been uncovered following a landslide caused by a severe rainstorm in 2015 and would no doubt be washed away with the next one.

Fossil hunting in New Zealand

In addition to the lack of professionals, the discipline's funding within New Zealand has decreased over the past half century. The Marsden Fund is a key sponsor of science projects but less than 10% of proposals are successful. The obvious wider issue here is that for the foreseeable future there is unlikely to be any private funding for scientific research that isn't financially viable in the short-term; let's face it, most paleontology isn't going to earn big bucks. That isn't to say there aren't some income streams available, especially around museums, merchandise and occasionally site tourism. However, New Zealand's dinosaur, marine reptile and pterosaur remains are mostly isolated fragments, hardly likely to prove star attractions for even the most ardent dino enthusiast.

Which brings us back to Joan Wiffen. She went from a minimal secondary education (due to her father's prejudice) to an honorary science degree from Massey University - whilst still supporting the view that it is the duty of married women to do all the housework. Although she may not have actively negated the Hawke's Bay housewife appellation, the term is hardly suitable for an extremely conscientious scientist; after all, if her husband had been the team leader, he probably wouldn't have been referred to as a Hawke's Bay electronics technician!

Having recently finished reading Wiffen's 1991 book Valley of the Dragons: The Story of New Zealand's Dinosaur Woman I was struck by the obvious lack of professional expertise available in New Zealand as recently as the 1970s and 1980s. Even today, the thirty or so professional paleontologists in the country don't have their own organisation and fall under the auspices of the Geoscience Society of New Zealand. Yet I've long considered geology to be an extremely conservative discipline (think that meteorologist Alfred Wegener's continental drift hypothesis gained little traction for decades until evidence of plate tectonics was found, rather than there being any active interest in resolving the mystery) and so can do few favours to outsiders.

Therefore, Joan Wiffen faced almost complete indifference from scientists who proclaimed there were no relevant strata in which to locate dinosaur remains. Apparently someone had previously noticed reptilian bones in a Te Hoe Valley stream bed - which is what sparked off Wiffen's first expedition - but no-one had the interest or funding to follow it up. Her narrative hints at the disdain professionals felt for amateurs in general but happily this situation has changed markedly in the interim, with citizen science helping to bridge gaps in many fields. In the case of New Zealand paleontology, the notable finds by amateurs have included previously unknown species, adding to the evidence that areas of the 'lost' continent of Zealandia have been continually above water since the Mesozoic.

My recent Taranaki excursion was child's play compared to the deprivations Wiffen and co endured in their rat-infested self-built hut, not to mention funding the entire work themselves. From learning how to remove rock matrix via acetic acid (in an old baby bath, no less) to building a stereo microscope stand from a pillar drill base, the Hawke's Bay team certainly utilised classic kiwi number eight wire ingenuity.

In a pre-internet age - it took six months just to pin down the location and land owner of the area marked 'reptile bones' - gaining technical advice from foreign experts was slow and cumbersome. Ironically, in later years New Zealand professionals visited Wiffen's fossil preparation workshop to gain insight into their operation, including as to how she and her friends achieved such high standards. Clearly, her work wasn't the product of a casual dilettante but the output of a highly motivated and hard-working scientist, albeit an unpaid one.

The American paleontologist and evolutionary biologist Stephen Jay Gould frequently observed that his disciplines were forms of historical science, built upon a series of unrepeatable events created by the complex interaction of disparate factors. Therefore deposition and preservation - even the discovery - of fossils are unique circumstances; remains that are visible today may be little more than dust tomorrow. We owe Joan Wiffen and her colleagues an enormous debt for increasing the sum of human knowledge at their own time and expense, purely for the love of science. And if any Hawke's Bay residents want to pick up where she left off, then I'm sure both professionals and posterity would be most grateful!