Showing posts with label James Clerk Maxwell. Show all posts
Showing posts with label James Clerk Maxwell. Show all posts

Wednesday 20 November 2013

Newton and Einstein: fundamental problems at the heart of science

As previously discussed, Arthur C. Clarke's First Law is as follows: "When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is very probably wrong." Now there have been many examples of prominent scientists who have been proved wrong but don't want to lose their pet idea - think astronomer Fred Hoyle and the Steady State Theory - or bizarrely negated their own hypothesis, such as natural selection's co-discoverer Alfred Russel Wallace and his supernatural explanation of the human mind.

But although with hindsight we can easily mock when pioneers have failed to capitalise on a theory that later proves canonical (assuming any theory except the second law of thermodynamics can ever be said to be the final word in the matter) there are some scientists who have followed profoundly unorthodox paths of thought. In fact, I would go so far as to as say that certain famous figures would find it almost impossible to maintain positions in major research institutes today. This might not matter if these were run-of-the-mill scientists, but I'm talking about two of the key notables of the discipline: Sir Isaac Newton and Albert Einstein.

The public perception of scientists has changed markedly over the past half century, from rational authority figures, via power-mad destroyers, to the uncertainties of today, when the often farcical arguments surrounding climate change have further undermined faith in scientific 'truth'. But the recognition of Newton and Einstein's achievements has never wavered, making them unassailable figures in the history of science. Indeed, if there were ever to be two undisputed champions of physics, or even for all of science - as chosen by contemporary scientists, let alone the public - this contrasting pair is likely to the among the most popular. Yet underneath their profound curiosity and dogged search for truth there are fundamental elements to their personal research that make the offbeat ideas of Wallace, Hoyle & co. appear mildly idiosyncratic.

1) Sir Isaac Newton
While some historians have tried to pass off Newton's non-scientific work as typical of his age, his writings on alchemy, eschatology and the general occult are at least as numerable as those on physics. Some of the more recent examinations of his work have suggested that without these pseudo-scientific studies, Newton would not have gained the mind-set required to generate the scientific corpus he is renowned for. Although he claimed to have no need for hypotheses or 'occult qualities', preferring to examine natural phenomena in order to gain understanding, much of Newton's surviving notes suggest the very opposite. Whether he was using numerology to research the date of the end of the world, or alchemy to search for the Philosopher's Stone, the real Newton was clearly a many-faceted man. This led economist (and owner of some of Newton's papers) John Maynard Keynes to label him "the last of the magicians". Indeed, key aspects of Newton's personality appear entirely in tune with pseudo-science.

It is well known that Newton was a secretive man, given to hiding his discoveries for decades and not wanting to share his theories. Part of this was due to his wish to avoid having to waste time with the less intelligent (i.e. just about everybody else) and partly to his fear of plagiarism, frequently experiencing conflicts with contemporary natural philosophers. To some extent this unwillingness to publish only exacerbated the issue, such as when Leibniz published his version of calculus some years after Newton had completed his unpublicised 'fluxions'.

Today, establishing scientific priority relies upon prompt publication, but Newton's modus operandi was much closer to the technique of the alchemist. Far from being a non-systematic forerunner of chemistry, alchemy was a subjective discipline, couched in metaphor and the lost wisdom of 'ancient' sages (who, after Newton's time, were frequently discovered to be early Medieval or Ptolemaic Egyptian frauds). The purity of the practitioner was deemed fundamental to success and various pseudoscientific 'influences' could prevent repeatability of results.

In addition, such knowledge as could be discovered was only to be shared between a few chosen adepts, not disseminated to a wide audience for further examination and discussion. In personality then, Newton was far more like the pre-Enlightenment alchemist than many of his contemporaries. He believed in a sense of his own destiny: that he had been chosen by God to undertake the sacred duty of decoding now-hidden patterns in the universe and history. When Descartes postulated a 'clockwork universe', Newton opposed it on the grounds that it had no place for a constantly intervening deity. And surprising as it may seem, in that respect he had a lot in common with Einstein.

2) Albert Einstein
Einstein was in many ways a much more down-to-earth (and fully rounded human being) than Newton. Whereas the latter frequently neglected such basic human activities as food and sleep, Einstein indulged in pipe tobacco and playing the violin (shades of Sherlock Holmes, indeed!) However, he was just as much a determined thinker when it came to solving fundamental riddles of nature. A good anecdote, possibly true, tells of how whilst searching for a makeshift tool to straighten a bent paperclip, Einstein came across a box of new paperclips. Yet rather than use one of the new ones per se, he shaped it into the tool required to fix the original paperclip. When questioned, he replied that once had started a task it was difficult for him to curtail it.

But one of the oft-quoted phrases surrounding him is that Einstein would have been better off spending his last two or three decades fishing, rather than pursuing a unified field theory. The reason for this is that despite being a pioneer in the quantum theory of light, he could not accept some of the concepts of quantum mechanics, in particular that it was a fundamental theory based on probability rather than simply a starting point for some underlying aspect of nature as yet unknown.

Even today there are only interpretations of quantum mechanics, not a completely known explanation of what is occurring. However, Einstein considered these as more akin to philosophy rather than science and that following for example the Copenhagen interpretation prevented deeper thought into the true reality. Unfortunately, the majority of physicists got on the quantum mechanics bandwagon, leaving Einstein and a few colleagues to try to find holes in such strange predictions as entanglement, known by Einstein under the unflattering term of "spooky action at a distance".

Although it was only some decades after his death that such phenomena were experimentally proven, Einstein insisted that the non-common sense aspects of quantum mechanics only showed their incompleteness. So what lay at the heart of his fundamental objections to the theory? After all, his creative brilliance had shown itself in his discovery of the mechanism behind Newtonian gravitation, no mean feat for so bizarre a theory. But his glorious originality came at a price: as with many other scientists and natural philosophers, from Johannes Kepler via Newton to James Clerk Maxwell, Einstein sought answers that were aesthetically pleasing. In effect, the desire for truth was driven by a search for beautiful patterns. Like Newton, there is the concept of wanting to understand the mind of God, regardless of how different the two men's concept of a deity was (in Einstein's case, looking for the secrets of the 'old one').

By believing that at the heart of reality there is a beautiful truth, did Einstein hamper his ability to come to terms with such ugly and unsatisfying concepts as the statistical nature of the sub-atomic world? In this respect he seems old-fashioned, even quaint, by the exacting standards required - at least theoretically - in contemporary research institutes. Critical thinking unhampered by aesthetic considerations has long been shown a myth when it comes to scientific insights, but did Einstein take the latter too far in his inability to accept the most important physics developed during the second half of his life? In some respects, his work after the mid-1920s is seemingly as anachronistic as Newton's pseudo-scientific interests.

As a result of even these minimal sketches, it is difficult to believe that Newton would ever have gained an important academic post if he were alive today, whilst Einstein, certainly in the latter half of his life would probably have been relegated to a minor research laboratory at best. So although they may be giants in the scientific pantheon, it is an irony that neither would have gained such acceptance by the establishment had they been alive today. If there's a moral to be drawn here, presumably it is that even great scientists are just as much a product of their time as any other human being, even if they occasionally see further than us intellectual dwarves.

Monday 25 June 2012

Ultramarine and ultraviolet: scientific theories and technological techniques in contemporary art

If one of your first thoughts when considering science is of a scruffy-headed physicist chalking equations on a blackboard - interactive whiteboards somehow being not quite the same - then it's easy to see how the subject might offer limited appeal to artists. So is it possible in our visually sophisticated society to create satisfying works of art that utilise elements of scientific thought processes, theories or techniques?

It's difficult to define what constitutes contemporary art, since the majority of people seemingly find it difficult to relate to installations, video art or ready-mades, never mind more traditional media. On the other hand, it can be argued that scientists might have a sense of aesthetic that differs profoundly from the mainstream. A well-known example of this was electro-magnetism pioneer James Clerk Maxwell's addition of a term to an equation in order to achieve an aesthetic balance, prior to him working out the actual meaning of the term.  Novelist and physicist Alan Lightman promotes the notion that scientists have a difference perspective on aesthetics, from the familiar consideration of particle symmetries to more abstruse mathematical harmonies. He describes Steven Weinberg's 1967 paper on the weak nuclear interaction in these terms: "to a physicist, (this) Langrangian…is a work of art." As someone of very limited mathematical ability like me it might as well be written in ancient cuneiform, but you can judge for yourself below:


But then aren't all aesthetic judgements subjective? One familiar chain of urban myths concerns art galleries who have suffered the embarrassment of finding their installations thrown out by over-zealous cleaners who were unaware the material was art. This leads to the interesting point that although much contemporary art is roundly ignored outside the cognoscenti, new technology and the social changes engendered by it, especially mobile communications and the World Wide Web, have been rapidly assimilated and rarely questioned. When it comes to the shock of the new, scientific ideas and the resulting technology appear much more comfortable than post-Second World War art. Or should that be qualified by the statement that if the technology is seen (albeit via persuasive advertising) as an improvement to everyday life, then it will be unquestioningly accepted, whereas art is ignored since it is rarely seen as serving a purpose?

At this point it might be good to consider two distinct approaches to how the two disciplines can be integrated:
  1. visual representations of and/or responses to science
  2. the use of scientific theories and methods to produce art
Approach 1:
In the Eighteenth Century Joseph Wright of Derby produced several atmospheric scenes of experiments, but the art history of the past century has made such clear-cut reportage unfashionable. The visual sophistication of our age would probably deem equivalent work today as both pedestrian and irrelevant to contemporary needs. After all, a straightforward painting of the Large Hadron Collider or a theorist lecturing in front of an equation-covered black board would hardly prove satisfying either from an aesthetic standpoint or as journalistic commentary. Changing technology has also eliminated the innate visual romanticism of peering through the eyepiece of a microscope or telescope; sitting at a computer screen is hardly inspiring material for the heirs to Wright of Derby.

Over the years I've attended several exhibitions that emphasised collaborations between both disciplines and have to confess I usually find the works have little depth beyond obvious, facile connections. Last year I saw a series of works reminiscent of my juvenilia (see the previous post). It consisted of a sequence of photographs of birds in flight, overlaid with the relevant motion equations. A slightly better result comes from the world of fashion, via collaboration between designer Helen Storey and her developmental biologist sister Kate. In the late 1990s they created a series of dresses elucidating the first thousand hours of human life, from fertilization through to recognizable human form.

One of my favourite examples is Yukinori Yanagi's World Flag Ant Farm, in which ants were introduced into a series of interconnected Perspex boxes containing national flags made of coloured sand. Once the human artist finished the initial setup, the wandering ants rearranged the pictorial elements as they used the sand to construct their colony. Yanagi stated his intention was to examine how much the animals rely on programmed instructions rather than free thought, but ironically the end result appeared far more expressive of individual freedom than the robot-like mentality considered essential for a hive mind.

Since 2005 Princeton University has been holding an irregular Art of Science competition, but again the resonance of the work varies enormously. Many entries are photographs of experiments or equipment, frequently at nano- to microscopic scales: good to look at but nothing that could not be faked by a skilled Photoshop user. However, a few submissions have proven to be the ultimate achievement of an aesthetic work integrated within an active experiment, including how computer memory degrades following power loss and a study of individual ants within a colony by painting unique patterns of dots on them. By and large though, most examples I have seen are woefully inadequate attempts to combine art and science.

Approach 2:
Originating with Hamlet's dictum to actors, it has been said that art's task is to hold a mirror up to nature. There have been concerted efforts by artists to deconstruct the world by adapting scientific knowledge, from the Impressionists attempt to understand how objects are modelled by light (consider Monet's haystacks and Rouen cathedral at different times of day and year), via the Pointillist's experiments to understand how the eye builds an image from minute elements, to the Futurists and Vorticists attempts to create apparent movement in a still image. Now that science shows us brave new worlds (apologies for mixing my Shakespeares) via electron microscopes, telescopes in numerous wavelengths, etc., what attempts have been made to illustrate this?

Luke Jerram is a colour-blind artist who has created glass sculptures of viruses at approximately one million times life size. What is so interesting apart from the novelty value of the subject matter is that unlike most representations in popular science books, the sculptures are transparent and therefore colourless. The works therefore immediately impart useful knowledge: viruses exist at a scale below the wavelengths of visible light and so cannot be the beautiful if  randomly-hued images we see in computer-generated illustrations. In fact, the only direct visualisation of viruses is produced by high resolution, transmission electron microscopy, the results being monochromatic, grainy and from the layman's point of view, distinctly samey. Jerram's works are not only a complex example of art meeting science, but in a tribute to their accuracy, have been used in medical texts and journals.

American artist Hunter Cole has created interesting works using techniques derived from her geneticist background, such as drawing in bioluminescent bacteria. At an even more experimental level, Brazilian Eduardo Kac has not just used life forms as media but has created novelty organisms as the artworks themselves, such as a fluorescing rabbit courtesy of a jellyfish protein gene; Doctor Frankenstein, come on down! Finally, at yet another step, Luke Jerram's 2007 Dream Director installation even made the viewer the subject of an experiment, although not exactly under laboratory conditions: visitors could stay in the gallery overnight, sleeping in pods which played themed sounds trigged by their own rapid eye movement.

If there is anything the recent history of science, especially cutting-edge physics, has taught us, it is that we need metaphors to visualise ideas that cannot be directly observed by our limited senses. But as astrophysicist and science writer John Gribbin has frequently pointed out, linguistic metaphor is often inadequate to the task, causing the analogy to return upon itself. Thus without help from the visual arts, anyone who isn't a maths genius has little hope of understanding the more arcane aspects of post-classical physics. Both art and science challenge perceptions, but it is likely that the latter will increasingly need the former to elucidate novel facts and theories. So any artist seeking a purpose need look no further: here's to many a fruitful collaboration!

Sunday 17 January 2010

Shall I compare thee to a charming quark? When mitochondria meets metaphor

Many years ago whilst holidaying in Cyprus I experienced an event commonplace to our ancestors but increasingly rare to us light-polluted urbanites today. Sitting outside one evening a spectacular glow appeared over a nearby hill, slowly gaining a floodlight intensity until the full moon rose, casting shadows and obscuring the Milky Way. Small wonder previous centuries have written so much about the beauty of the "starry realm"; but can poetry survive when having discovered the secrets of the stars, we have ironically lost touch with them as a sensory experience? As the late Richard Feynman asked, "do I see less or more?" His answer, proving him a worthy successor to Emily Dickinson and Robert Frost, encapsulates the view that knowledge gained need not lessen the wonder: "stuck on this carousel my little eye can catch one million year old light..."

But then the night sky (and the natural world in general) is an easy poetic target compared to other aspects of science. Yet historical examples of British scientist-poets abound, from Charles Darwin's grandfather Erasmus, whose verse included copious footnotes explaining the ideas within, to chemist Humphry Davy, physicist James Clerk Maxwell, and more recently biologist Julian Huxley. You might ask who are today's equivalents - who writes paeans to Messenger RNA or odes to nuclear fusion? There are poets who exchanged science for versifying (David Morley) and scientists who edit poetry (Jocelyn Bell Burnell), but few who simultaneously practice both sides of C.P. Snow's infamous The Two Cultures. Apart from several astronomy compilations (featuring verse largely by non-astronomers) there are hardly any recent science-orientated volumes aimed at adults except for James Muirden's The Cosmic Verses: A Rhyming History of the Universe. Informative as it is, Muirden's charming couplets hardly push the boundaries of poetry or science exposition.

One obvious (and therefore not necessarily correct) reason for the lack of contemporary science poetry is that the complexity of modern theories and terminology create a prohibitive first hurdle: the likes of phagocytosis and inhomogeneous magnetic fields hardly trip off the tongue. However, ecologist and 'lapsed physicist' Mario Petrucci, a rare example of a contemporary scientist with an actively-employed poetic gift, argues that science-inspired poetry shouldn't rely on technological name-dropping but look at the defining methodologies. He provides an exquisite example via a (prose) description of the physiological response to listening to verse, which he defines as the "subliminal scent of aroused communication".

Then again, modes of writing have changed dramatically over the past century, with the florid, highfalutin prose of the Victorians replaced by a detached, matter-of-fact style developed to avoid ambiguity. Thomas Henry Huxley (Julian's grandfather) was, like many of his contemporaries, capable of prose that to the modern ear is to all intents and purposes poetry: "...intellectually we stand on an islet in the midst of an illimitable ocean of inexplicability. Our business in every generation is to reclaim a little more land..." In contrast, today's technical papers achieve universal comprehension by austerity of language. This is of course the complete antithesis of poetry, wherein each reader brings their own personal history to enhance imagery and meaning.

At a practical level, does the constant 21st century babble of communications and background noise (not just aural) deprive would-be poets of time to reflect? This implies a somewhat rose-tinted view of earlier times, even though the virtual disappearance of a Classics-based education system has certainly divested us of the safety net of enduring metaphors. In addition, as scientists becoming ever-more specialist in narrower fields (not to mention polymathism seemingly frowned upon), is there a fear from practitioners and publishers alike that the profession has little worth versifying? Even the romantic image of the stargazer spending their nights in a chilly dome has seemingly been replaced by observation via computer screen.

Despite there probably being more books arguing the relationship between arts and sciences than there are volumes of science-themed poetry (from Mary Midgley versus Richard Dawkins to Stephen Jay Gould's attack on E.O. Wilson's definition of consilience), there is plenty for scientist-poets, or just writers with scientific knowledge, to write about. The late 19th century arrogance that the quest for knowledge was nearing its end has been superceded by the view that there may even not be any final answers to life, the universe, and everything. Far from being a list of dry facts and equations, the methods of science demand creativity to achieve paradigm shifts, as anyone with an understanding of Einstein's thought experiments knows. Other natural philosophers have achieved major breakthroughs via aesthetic considerations, such as harmonic proportions for Johannes Kepler, symmetry for Clerk Maxwell and patterns and linguistic analogies for Mendeleyev. As theoretical physicist Lee Smolin has stated, his discipline is based around an aesthetic mode of working, fashioning constructs that capture some essence of understanding about reality. Are theories such as loop quantum gravity that different from poetic metaphors? After all, even the subatomic particle we call a quark was named after the sound of ducks, and then later linked to the rhyme in Finnegans Wake.

But then there is the difficulty of finding a universal definition for poetry anyway. The title of Michael Guillen's Five Equations that Changed the World: The Power and Poetry of Mathematics suggests an aesthetic form on par with verse. If we can accept a wider meaning then perhaps there is a solution as to where science poetry is still to be found: hidden in the mellifluous prose of popularisers. The poetic style of Carl Sagan and his successors can clearly be traced to Loren Eiseley, thence to the pre-war British polymath James Jeans, who in turn was not so far removed from T.H. Huxley at his most rhapsodical. In addition to his writing, Sagan was also capable of poetic gestures that clearly represent our multi-media age's continuation of Erasmus Darwin's verses. When Voyager 1 had passed the orbits of Neptune and Pluto, Sagan persuaded NASA to turn the probe's cameras back towards the sun and make a family portrait of the Solar System, including our very own pale blue dot. Surely this is a superlative example of the amalgamation of science and poetry? And as to the future, the English author Eden Phillpotts once wrote: "The universe is full of magical things, patiently waiting for our wits to grow sharper."

Technorati Tags: , ,