Showing posts with label Martin Rees. Show all posts
Showing posts with label Martin Rees. Show all posts

Sunday 1 April 2018

Engagement with Oumuamua: is our first interstellar visitor an alien spacecraft?

It's often said that fact follows fiction but there are times when some such instances appear to be uncanny beyond belief.  One relatively well-known example comes from the American writer Morgan Robertson, whose 1898 novella The Wreck of the Titan (originally entitled Futility) eerily prefigured the 1912 loss of the Titanic. The resemblances between the fictional precursor and the infamous passenger liner are remarkable, including the month of the sinking, the impact location, and similarities of size, speed and passenger capacity. I was first introduced to this series of quirky coincidences via Arthur C. Clarke's 1990 novel The Ghost from the Grand Banks, which not incidentally is about attempts to raise the Titanic. The reason for including the latter reference is that there may have just been an occurrence that involves another of Clarke's own works.

Clarke's 1973 award-winning novel Rendezvous with Rama tells of a 22nd century expedition to a giant interstellar object that is approaching the inner solar system. The fifty-four kilometre long cylinder, dubbed Rama, is discovered by an Earthbound asteroid detection system called Project Spaceguard, a name which since the 1990s has been adopted by real life surveys aiming to provide early warning for Earth-crossing asteroids. Rama is revealed to be a dormant alien spacecraft, whose trajectory confirms its origin outside of our solar system. After a journey of hundreds of thousands of years, Rama appears to be on a collision course with the Sun, only for it to scoop up solar material as a fuel source before heading back into interstellar space (sorry for the spoiler, but if you haven't yet read it, why not?)

In October last year astronomer Robert Weryk at the Haleakala Observatory in Hawaii found an unusual object forty days after its closest encounter with the Sun. Initially catalogued as 1I/2017 U1, the object was at first thought to be a comet, but after no sign of a tail or coma it was reclassified as an asteroid. After another week's examination 1I/2017 U1 was put into a class all by itself and this is when observers began to get excited, as its trajectory appeared to proclaim an interstellar origin.

As it was not spotted until about thirty-three million kilometres from the Earth, the object was far too small to be photographed in any detail; all that appears to telescope-mounted digital cameras is a single pixel. Therefore its shape was inferred from the light curve, which implied a longest-to-shortest axis ratio of 5:1 or even larger, with the longest dimension being between two hundred and four hundred metres. As this data became public, requests were made for a more familiar name than just 1I/2017; perhaps unsurprisingly, Rama became a leading contender. However, the Hawaiian observatory's Pan-STARRS team finally opted for the common name Oumuamua, which in the local language means 'scout'.

Various hypotheses have been raised as to exactly what type of object Oumuamua is, from a planetary fragment to a Kuiper belt object similar - although far smaller than - Pluto.  However, the lack of off-gassing even at perihelion (closest approach to the Sun) implies that any icy material must lie below a thick crust and the light curve suggests a denser material such as metal-rich rock. This sounds most unlike any known Kuiper belt object.

These unusual properties attracted the attention of senior figures in the search for extra-terrestrial intelligence. Project Breakthrough Listen, whose leadership includes SETI luminaries Frank Drake, Ann Druyan and Astronomer Royal Martin Rees, directed the world's largest manoeuvrable radio telescope towards Oumuamua. It failed to find any radio emissions, although the lack of a signal is tempered with the knowledge that SETI astronomers are now considering lasers as a potentially superior form of interstellar communication to radio.

The more that Oumuamua has been studied, the more surprising it appears. Travelling at over eighty kilometres per second relative to the Sun, its path shows that it has not originated from any of the twenty neighbouring solar systems. Yet it homed in on our star, getting seventeen percent nearer to the Sun than Mercury does at its closest. This seems to be almost impossible to have occurred simply by chance - space is just too vast for an interstellar object to have achieved such proximity. So how likely is it that Oumuamua is a real-life Rama? Let's consider the facts:
  1. Trajectory. The area of a solar system with potentially habitable planets is nicknamed the 'Goldilocks zone', which for our system includes the Earth. It's such a small percentage of the system, extremely close to the parent star, that for a fast-moving interstellar object to approach at random seems almost impossible. Instead, Oumuamua's trajectory was perfectly placed to obtain a gravity assist from the Sun, allowing it to both gain speed and change course, with it now heading in the direction of the constellation Pegasus.
  2. Motion. Dr Jason Wright, an associate professor of astronomy and astrophysics at Penn State University, likened the apparent tumbling motion to that of a derelict spacecraft, only to retract his ideas when criticised for sensationalism.
  3. Shape. All known asteroids and Kuiper belt objects are much less elongated than Oumuamua, even though most are far too small to settle into spherical shape due to gravitational attraction (the minimum diameter being around six hundred kilometres for predominantly rocky objects). The exact appearance is unknown, with the ubiquitous crater-covered asteroid artwork being merely an artist's impression. Astronautical experts have agreed that Oumuamua's shape is eminently suitable for minimising damage from particles.
  4. Composition. One definitive piece of data is that Oumuamua doesn't emit clouds of gas or dust that are usually associated with objects of a similar size. In addition, according to a report by the American Astronomical Society, it has an 'implausibly high density'. Somehow, it has survived a relatively close encounter with the Sun while remaining in one piece - at a maximum velocity of almost eighty-eight kilometres per second relative to our star!
  5. Colour. There appears to be a red region on the surface, rather than a uniform colour expected for an object that has been bombarded with radiation on all sides whilst in deep space for an extremely long period.
So where does this leave us? There is an enormous amount of nonsense written about alien encounters, conspiracy theories and the like, with various governments and the military seeking to hide their strategies in deliberate misinformation. For example, last year the hacker collective Anonymous stated that NASA would soon be releasing confirmation of contact with extraterrestrials; to date, in case you were wondering, there's been no such announcement. Besides which, wouldn't it more likely to come from a SETI research organisation such as the Planetary Society or Project Breakthrough Listen?

Is there any evidence to imply cover-up regarding Oumuamua? Here's some suggestions:
  1. The name Rama - already familiar to many from Arthur C. Clarke's novel and therefore evocative of an artificial object - was abandoned for a far less expressive and more obscure common name. Was this an attempt to distance Oumuamua from anything out of the ordinary?
  2. Dr Wright's proposals were luridly overstated in the tabloid media, forcing him to abandon further investigation. Was this a deliberate attempt by the authorities to make light of his ideas, so as to prevent too much analysis while the object was still observable?
  3. Limited attempts at listening for radio signals have been made, even though laser signalling is now thought to be a far superior method. So why have these efforts been so half-hearted for such a unique object?
  4. The only images available in the media are a few very samey artist's impressions of an elongated asteroid, some pock-marked with craters, others, especially animations, with striations (the latter reminding me more of fossilised wood). Not only are these pure speculation but none feature the red area reported from the light curve data. It's almost as if the intention was to show a totally standard asteroid, albeit of unusual proportions. But this appearance is complete guesswork: Oumuamua has been shoe-horned into a conventional natural object, despite its idiosyncrasies.
Thanks to Hollywood, most people's ideas of aliens are as implacable invaders. If - and when - the public receive confirmation of intelligent alien life will there be widespread panic and disorder? After all, the Orson Welles' 1938 radio version of H.G. Wells' War of the Worlds led some listeners to flee their homes, believing a Martian invasion had begun. Would people today be any different? The current following of dangerous fads such as paleo diets and raw water, never mind the paranoid conspiracy theories that fill the World Wide Web, lead me to expect little change from our credulous forbears.

The issue of course, comes down to one of security. Again, science fiction movies tend to overshadow real life space exploration, but the fact is that we have no spacecraft capable of matching orbits with the likes of Oumuamua. In Arthur C. Clarke's Rendezvous with Rama, colonists on 22nd century Mercury become paranoid with the giant spacecraft's approach and attempt to destroy it with a nuclear missile (oops, another spoiler there). There is no 21st century technology that could match this feat, so if Oumuamua did turn out to be an alien craft, we would have to hope for the best. Therefore if, for example, the U.S. Government gained some data that even implied the possibility of artifice about Oumuamua, wouldn't it be in their best interest to keep it quiet, at least until it is long gone?

In which case, promoting disinformation and encouraging wild speculation in the media would be the perfect way to disguise the truth. Far from being an advanced - if dead or dormant - starship, our leaders would rather we believed it to be a simple rocky asteroid, despite the evidence to the contrary. Less one entry for the Captain's log, and more a case of 'to boulderly go' - geddit?

Tuesday 28 November 2017

Research without borders: why international cooperation is good for STEM

I've just finished reading Bryan Sykes' (okay, I know he's a bit controversial) The Seven Daughters of Eve, about the development of mitochondrial DNA research for population genetics. One chapter mentioned Dr Sykes' discovery of the parallel work of Hans-Jürgen Bandelt, who's Mathematics Genealogy Project provided a structure diagram perfectly suited to explaining Sykes' own evolutionary branching results. This discovery occurred largely by chance, suggesting that small research groups must rely either on serendipity or have knowledge of the latest professional papers in order to find other teams who's work might be useful.

This implies that the more international the character of scientific and technological research, the more likely there will be such fortuitous occurrences. Britain's tortuous path out of the European Union has led various organisations on both sides of the Channel to claim that this can only damage British STEM research. The Francis Crick Institute, a London-based biomedical research centre that opened last year, has staff originating from over seventy nations. This size and type of establishment cannot possibly rely on being supplied with researchers from just one nation. Yet EU scientists resident in Britain have felt 'less welcome' since the Brexit referendum, implying a potential loss of expertise in the event of a mass withdrawal.

In recent years, European Union research donations to the UK have exceeded Britain's own contributions by £3 billion, meaning that the additional £300 million newly announced for research and development over the coming four years is only ten percent of what the EU has provided - and the UK Government is clearly looking to the private sector to make up the shortfall. It should also be recognised that although there are high numbers of non-British nationals working in Britain's STEM sector, the country also has a fair number of its own STEM professionals working overseas in EU nations.

The United Kingdom is home to highly expensive, long-term projects that require overseas funding and expertise, including the Oxfordshire-based Joint European Torus nuclear fusion facility. British funding and staff also contribute to numerous big-budget international projects, from the EU-driven Copernicus Earth observation satellite programme to the non-EU CERN. The latter is best-known for the Large Hadron Collider, the occasional research home of physicist and media star Brian Cox (how does he find the time?) and involves twenty-two key nations plus researchers from more than eighty other countries. Despite the intention to stay involved in at least the non-EU projects, surveys suggest that post-Brexit there will be greater numbers of British STEM professionals moving abroad. Indeed, in the past year some American institutions have actively pursued the notion of recruiting more British scientists and engineers.

Of course, the UK is far from unique in being involved in so many projects requiring international cooperation. Thirty nations are collaborating on the US-based Deep Underground Neutrino Experiment (DUNE); the recently-successful Laser Interferometer Gravitational-Wave Observatory (LIGO) involves staff from eighteen countries; and the Square Kilometre Array radio telescope project utilises researchers of more than twenty nationalities. Although the USA has a large population when compared to European nations, one report from 2004 states that approaching half of US physicists were born overseas. Clearly, these projects are deeply indebted to non-nationals.

It isn't just STEM professionals that rely on journeying cross-border, either. Foreign science and technology students make up considerable percentages in some developed countries: in recent years, over 25% of the USA's STEM graduate students and even higher numbers of its master's degree and doctorate students were not born there. Canada, Australia, New Zealand and several European countries have similar statistics, with Indian and Chinese students making up a large proportion of those studying abroad.

As a small nation with severely limited resources for research, New Zealand does extremely well out of the financial contributions from foreign students. Each PhD student spends an average of NZ$175,000 on fees and living costs, never mind additional revenue from the likes of family holidays, so clearly the economics alone make sense. Non-nationals can also introduce new perspectives and different approaches, potentially lessening inflexibility due to cultural mind sets. In recent years, two New Zealand-based scientists, microbiologist Dr Siouxsie Wiles and nanotechnologist Dr Michelle Dickinson (A.K.A. Nanogirl) have risen to prominence thanks to their fantastic science communication work, including with children. Both were born in the UK, but New Zealand sci-comm would be substantially poorer without their efforts. Could it be that their sense of perspective homed in on a need that locally-raised scientists failed to recognise?

This combination of open borders for STEM professionals and international collaboration on expensive projects proves if anything that science cannot be separated from society as a whole. Publically-funded research requires not only a government willing to see beyond its short-term spell in office but a level of state education that satisfies the general populace as to why public money should be granted for such undertakings. Whilst I have previously discussed the issues surrounding the use of state funding for mega-budget research with no obvious practical application, the merits of each project should still be discussed on an individual basis. In addition, and as a rule of thumb, it seems that the larger the project, the almost certain increase in the percentage of non-nationals required to staff it.

The anti-Brexit views of prominent British scientists such as Brian Cox and the Astronomer Royal, Lord Rees of Ludlow, are well known. Let's just hope that the rising xenophobia and anti-immigration feeling that led to Brexit doesn't stand for 'brain exit'. There's been enough of that already and no nation - not even the USA - has enough brain power or funding to go it alone on the projects that really need prompt attention (in case you're in any doubt, alternative energy sources and climate change mitigation spring to mind). Shortly before the Brexit referendum, Professor Stephen Hawking said: "Gone are the days when we could stand on our own, against the world. We need to be part of a larger group of nations." Well if that's not obvious, I don't know what is!

Tuesday 18 June 2013

Deserving dollars: should mega budget science be funded in an age of austerity?

With the UK narrowly avoiding France's fate of a triple dip recession, I thought I would bite the bullet and examine some of the economics of current science. In a time when numerous nations are feeling severe effects due to the downturn, it is ironic that there are a multitude of science projects with budgets larger than the GDP of some smaller nations. So who funds these ventures and are they value for money, or even worthwhile, in these straitened times? Here are a few examples of current and upcoming projects, with the lesser known the project the more the information supplied:

National Ignition Facility

The world's most powerful laser was designed with a single goal: to generate net energy from nuclear fusion by creating temperatures and pressures similar to those in the cores of stars. However, to state that the NIF has not lived up to expectation would be something of an understatement. According to even the most conservative sources, the original budget of the Lawrence Livermore National Laboratory project has at the very least doubled if not quadrupled to over US$4 billion, whilst the scheduled operational date came five years overdue.

I first learned of the project some years ago thanks to a friend who knew one of the scientists involved. The vital statistics are astonishing, both for the scale of the facility and the energies involved. But it seems that there may be underlying problems with the technology. Over-reliance on computer simulations and denial of deleterious experimental results on precursor projects, as well as the vested interests of project staffers and the over-confident potential for military advances, have all been suggested as causes for what history may conclude as a white elephant. So perhaps if you are looking for an archetypal example of how non-scientific factors have crippled research, this may well be it.

Unlike all the other projects discussed, the National Ignition Facility is solely funded by one nation, the USA. Of course, it could be argued that four billion dollars is a bargain if the project succeeded, and that it is today's time-precious society that needs to learn patience in order to appreciate the long-term timescales required to overcome the immense technological challenges. Nuclear fusion would presumably solve many of todays - and the foreseeable futures - energy requirements whilst being rather more environmentally friendly than either fossil fuels or fission reactors. The potential rewards are plain for all to see.

However, the problems are deep-rooted, leading to arguments against the development of laser-based fusion per se. Alternative fusion projects such as the Joint European Torus and the $20 billion ITER - see an earlier post on nuclear fusion research for details - use longer-established methods. My verdict in a nutshell: the science was possibly unsound from the start and the money would be better spent elsewhere. Meanwhile, perhaps the facility could get back a small portion of its funding if Star Trek movies continue to hire the NIF as a filming location!

The International Space Station

I remember the late Carl Sagan arguing that the only benefit of the ISS that couldn’t be achieved via cheaper projects such as – during the Space Shuttle era - the European Space Agency’s Spacelab, was research into the deleterious effects on health of long-duration spaceflight. So at $2 billion per year to run is it worthwhile, or but another example of a fundamentally flawed project? After all, as it is the station includes such non-scientific facets as the ultimate tourist destination for multi-millionaires!

Sometimes referred to as a lifeline for American and Russian aerospace industries (or even a way to prevent disaffected scientists in the latter from working for rogue states), I have been unable to offer a persuasive argument as to why the money would not have been better spent elsewhere. It is true that there has been investigation into vaccines for salmonella and MRSA, but after twelve years of permanent crewing on board the station, just how value for money has this research been? After all, similar studies were carried out on Space Shuttle flights in previous few decades, suggesting that the ISS was not vital to these programmes. The Astronomer Royal Lord Martin Rees has described as it as a 'turkey in the sky', siphoning funds that could have been spent on a plethora of unmanned missions such as interplanetary probes. But as we should be aware, it usually isn't a case that money not spent on one project would automatically become available for projects elsewhere.

On a positive scientific note, the station has played host to the $2 billion Alpha Magnetic Spectrometer - a key contender in the search for dark matter - which would presumably have difficulty finding a long-duration orbital platform elsewhere. But then this is hardly likely to excite those who want immediate, practical benefits from such huge expenditure.

The ISS has no doubt performed well as a test bed for examining the deterioration of the human body due to living in space, if anything seriously weakening the argument for a manned Mars mission in the near future. Perhaps one other area in which the station has excelled has been that of a focal point for promoting science to the public, but surely those who follow in Sagan’s footsteps - the U.K.'s Brian Cox for one - can front television series with a similar goal for the tiniest fraction of the cost?

The Large Hadron Collider

An amazing public-relations success story, considering how far removed the science and technology are from everyday mundanity, the world's largest particle accelerator requires $1 billion per year to operate on top of a construction budget of over $6 billion. With a staff of over 10,000 the facility is currently in the midst of a two-year upgrade, giving plenty of time for its international research community to analyse the results. After all, the Higgs Boson A.K.A. 'God particle' has been found…probably.

So if the results are confirmed, what next? Apparently, the facility can be re-engineered for a wide variety of purposes, varying from immediately pragmatic biomedical research on cancer and radiation exposure to the long-term search for dark matter. This combination of practical benefits with extended fundamental science appears to be as good a compromise as any compared to similar-scale projects. Whether similar research could be carried out by more specialised projects is unknown. Does anyone know?

As for the future of mega-budget schemes, there are various projects in development extending into the next decade. The Southern Hemisphere is playing host to two large international collaborations: the Square Kilometre Array is due to begin construction in eleven nations - excluding its UK headquarters - in 2016, but it will be around eight years before this $2 billion radio telescope array is fully operational. Meanwhile the equally unimaginatively-named European Extremely Large Telescope is planned for a site in Chile, with an even longer construction period and a price tag approaching $1.5 billion. Both projects are being designed for a variety of purposes, from dark matter investigation to searching for small (i.e. Earth-sized) extra-solar planets with biologically-modified atmospheres.

At this point it is pertinent to ask do extremely ambitious science projects have to come with equally impressive price tags? Personally I believe that with a bit more ingenuity a lot of useful research can be undertaken on far smaller budgets. Public participation in distributed computing projects such as Folding@home and Seti@home, in which raw data is processed by home computers, is about as modest an approach as feasible for such large amounts of information.

An example of a long-term project on a comparatively small budget is the US-based Earthscope programme, which collects and analyses data including eminently practical research into seismic detection. With a construction cost of about $200 million and annual budget around a mere $125 million this seems to be a relative bargain for a project that combines wide-scale, theoretical targets with short-term, pragmatic gains. But talking of practical goals, there are other scientific disciplines crying out for a large increase in funding. Will the explosive demise of a meteor above the Russian city of Chelyabinsk back in February act as a wake-up call for more research into locating and deflecting Earth-crossing asteroids and comets? After all, the 2014 NASA budget for asteroid detection projects is barely over the hundred million dollar mark!

I will admit to some unique advantages to enormous projects, such as the bringing together of researchers from the funding nations that may lead to fruitful collaboration. This is presumably due to the sheer number of scientists gathered together for long periods, as opposed to spending just a few days at an international conference or seminar, for instance. Even so, I cannot help but feel that the money for many of the largest scale projects could be bettered used elsewhere, solving some of the immediate problems facing our species and ecosystem.

Unfortunately, the countries involved offer their populations little in the way of voice as to how public money is spent on research. But then considering the appalling state of science education in so many nations, as well as the short shrift that popular culture usually gives to the discipline, perhaps it isn’t so surprising after all. If we want to make mega-budget projects more accountable, we will need to make fundamental changes to the status of science in society. Without increased understanding of the research involved, governments are unlikely to grant us choice.

Wednesday 27 February 2013

An index of possibilities: is science prognostication today worthwhile or just foolish?

A few evenings ago I saw the International Space Station. It was dusk, and walking home with the family we were looking at Jupiter when a moving bright light almost directly overhead got our attention. Too high for an aircraft, too large for a satellite, a quick check on the Web when we got home confirmed it was the ISS. 370 kilometres above our heads, a one hundred metre long, permanently crewed construction confirmed everything I read in my childhood: we had become a space-borne species. But if so few of the other scientific and technological advances I was supposed to be enjoying in adulthood have come true, has the literature of science prediction in these areas also changed markedly?

It is common to hear nowadays that science is viewed as just one of many equally valid methods of describing reality. So whilst on the one hand most homes in the developed world contain a myriad of up-to-date high technology, many of the users of these items haven't got the faintest idea how they work. Sadly, neither do they particularly have any interest in finding out. It's a scary thought that more and more of the key devices we rely on every day are designed and manufactured by a tiny percentage of specialists in the know; we are forever increasing the ease with which our civilisation could be knocked back to the steam age - if not the stone age.

Since products of such advanced technology are now familiar in the domestic environment and not just in the laboratory, why are there seemingly fewer examples of popular literature praising the ever-improving levels of knowledge and application compared to Arthur C. Clarke's 1962 prophetic classic Profiles of the Future and its less critical imitators that so caught my attention as a child? Is it that the level of familiarity has led to the non-scientist failing to find much interest or inspiration in what is now such an integrated aspect of our lives? With scientific advance today frequently just equated with cutting-edge consumerism we are committing an enormous error, downplaying far more interesting and important aspects of the discipline whilst cutting ourselves off from the very processes by which we can gain genuine knowledge.

Therefore it looks as if there's somewhat of an irony: non-scientists either disregard scientific prognostication as non-practical idealism ("just give me the new iPad, please") and/or consider themselves much more tech savvy than the previous generation (not an unfair observations, if for obvious reasons - my pre-teen children can work with our 4Gb laptop whilst my first computer had a 48Kb RAM). Of course it's not all doom and gloom. Although such as landmark experiments as the New Horizons mission to Pluto has gone largely unnoticed, at least by anyone I know, the Large Hadron Collider (LHC) and Mars Curiosity rover receive regular attention in popular media.

Perhaps the most regularly-occurring theme in science news articles over the past decade or so has been climate change, but with the various factions and exposé stories confusing the public on an already extremely complex issue, could it be that many people are turning their back on reading postulated technological advances as (a) technology may have greatly contributed to global warming; and (b) they don't want to consider a future that could be extremely bleak unless we ameliorate or solve the problem? The Astronomer Royal and former President of the Royal Society Martin Rees is one of many authors to offer a profoundly pessimistic view of mankind's future. His 2003 book Our Final Hour suggests that either by accident or design, at some point before AD2100 we are likely to initiate a technological catastrophe here on the Earth, and the only way to guarantee our species' survival is to establish colonies elsewhere as soon as possible.

But there are plenty of futurists with the opposite viewpoint to Rees and like-minded authors, including the grandly-titled World Future Society, whose annual Outlook reports are written with the aim of inspiring action towards improving our prospects. Most importantly, by including socio-economic aspects they may fare better than Arthur C. Clarke and his generation, whose space cadet optimism now seems hopelessly naïve.

One way near-future extrapolation may increase accuracy is for specialists to concentrate in their area of expertise. To this end, many scientists and popularisers have concentrated on trendy topics such as nanotechnology, with Ray Kurzweil perhaps the best known example. This isn't to say that there aren't still some generalist techno-prophets still around, but Michio Kaku's work along these lines has proved very mixed as to quality whilst the BBC Futures website is curiously old school, with plenty of articles on macho projects (e.g. military and transport hardware) that are mostly still in the CAD program and will probably remain that way for many years to come.

With so many factors influencing which science and technology projects get pursued, it seems worthwhile to consider whether even a little knowledge of current states and developments might be as useful as in-depth scientific knowledge when it comes to accurate prognostication, with luck instead playing the primary role. One of my favourite examples of art-inspired science is the iPad, released to an eager public in 2010 some twenty-three years after the fictional PADD was first shown on Star Trek: The Next Generation (TNG) - although ironically the latter is closer in size to non-Apple tablets. In an equally interesting reverse of this, there is now a US$10 million prize on offer for the development of a hand-held Wi-Fi health monitoring and diagnosis device along the lines of the Star Trek tricorder. No doubt Gene Roddenberry would have been pleased that his optimistic ideas are being implemented so rapidly; but then even NASA have at times hired his TNG graphic designer!

I'll admit that even I have made my own modest if inadvertent contribution to science prediction. In an April Fools' post in 2010 I light-heartedly suggested that perhaps sauropod dinosaurs could have used methane emissions as a form of self-defence. Well, not quite, but a British study in the May 2012 edition of Current Biology hypothesises that the climate of the period could have been significantly affected by dino-farts. As they say, truth is always stranger than fiction…