Monday 30 July 2012

Buy Jupiter: the commercialisation of outer space

I recently saw a billboard for the Samsung Galaxy SIII advertising a competition to win a "trip to space", in the form of a suborbital hop aboard a Virgin Galactic SpaceshipTwo. This phrase strikes me as highly interesting: a trip to space, not into space, as if the destination was just another beach holiday resort. The accompanying website uses the same wording, so clearly the choice of words wasn't caused by space issues (that's space for the text, not space as in outer). Despite less than a dozen space tourists to date, is space travel now considered routine and the rest of the universe ripe for commercial gain, as per the Pan Am shuttle and Hilton space station in 2001: A Space Odyssey? Or is this all somewhat premature, with the hype firmly ahead of the reality? After all, the first fee-paying space tourist, Dennis Tito, launched only eleven years ago in 2001.

Vodafone is only the second company after Guinness Breweries to offer space travel prizes, although fiction was way ahead of the game: in Arthur C. Clarke's 1952 children's novel Islands in the Sky the hero manages a trip into low Earth orbit thanks to a competition loophole.  However, the next decade could prove the turning point. Virgin Galactic already have over 500 ticket-holders whilst SpaceX, developer of the first commercial orbital craft - the unmanned Dragon cargo ship - plan to build a manned version that could reduce orbital seat costs by about 60%.

If anything, NASA is pushing such projects via its Commercial Orbital Transportation Services (COTS) programme, including the aim of using for-profit services for the regular supply of cargo and crew to the International Space Station (ISS). The intention is presumably for NASA to concentrate on research and development rather than routine operations, but strong opposition to such commercialisation comes from an unusual direction: former NASA astronauts including Apollo pioneers Neil Armstrong and Eugene Cernan deem the COTs programme a threat to US astronautic supremacy. This seems to be more an issue of patriotism and politics rather than a consideration of technological or scientific importance. With China set to overtake the USA in scientific output next year and talk of a three-crew temporary Chinese space station within 4 years, the Eclipse of the West has already spread beyond the atmosphere. Then again, weren't pre-Shuttle era NASA projects, like their Soviet counterparts, primarily driven by politics, prestige, and military ambitions, with technological advances a necessary by-product and science very much of secondary importance?

Commerce in space could probably be said to have begun with the first communications satellite, Telstar 1, in 1962. The big change for this decade is the ability to launch ordinary people rather than trained specialists into space, although as I have mentioned before, the tourist jaunts planned by Virgin Galactic hardly go where no-one has gone before. The fundamental difference is that such trips are deemed relatively safe undertakings, even if the ticket costs of are several orders greater than any terrestrial holiday. A trip on board SpaceShipTwo is currently priced at US$200,000 whilst a visit to the International Space Station will set you back one hundred times that amount. This is clearly somewhat closer to the luxury flying boats of the pre-jet era than any modern package tour.

What is almost certain is that despite Virgin Galactic's assessment of the risk as being akin to 1920s airliners, very few people know enough of aviation history's safety record to make this statistic meaningful. After all, two of the five Space Shuttle orbiters were lost, the latter being the same number intended for the SpaceshipTwo fleet. Although Virgin Galactic plays the simplicity card for their design - i.e. the fewer the components, the less the chance of something going wrong - it should be remembered that the Columbia and Challenger shuttles were lost due to previously known and identified problems with the external fuel tank and solid rocket boosters respectively. In other words, when there is a known technical issue but the risk is considered justifiable, human error enters the equation.

In addition, human error isn't just restricted to the engineers and pilots: anything from passenger illness (about half of all astronauts get spacesick - headaches and nausea for up to several days after launch) to disruptive behaviour of the sort I have witnessed on airliners. Whether the loss of business tycoons or celebrities would bring more attention to the dangers of space travel remains to be seen. Unfortunately, the increase in number and type of spacecraft means it is almost certainly a case of when, not if.

Planet Saturn via a Skywatcher telescope

Location location location (via my Skywatcher 130PM)

But if fifteen minutes of freefall might seem a sublime experience there are also some ridiculous space-orientated ventures, if some of the ludicrous claims found on certain websites are anything to go by. Although the 1967 Outer Space Treaty does not allow land on other bodies to be owned by a nation state, companies such as Lunar Embassy have sold plots on the Moon to over 3 million customers. It is also possible to buy acres on Mars and Venus, even if the chance of doing anything with it is somewhat limited. I assume most customers treat their land rights as a novelty item, about as useful as say, a pet rock, but with some companies issuing mineral rights deeds for regions of other planets, could this have serious implications in the future? Right now it might seem like a joke, but as the Earth's resources dwindle and fossil fuels run low, could private companies race to exploit extra-terrestrial resources such as lunar Helium 3?

Various cranks/forward thinkers (delete as appropriate) have applied to buy other planets since at least the 1930s but with COTs supporting private aerospace initiatives such as unmanned lunar landers there is at least the potential of legal wrangling over mining rights throughout the solar system. The US-based company Planetary Resources has announced its intention to launch robot mining expeditions to some of the 1500 or so near-Earth asteroids, missions that are the technological equivalent of a lunar return mission.

But if there are enough chunks of space rock to go round, what about the unique resources that could rapidly become as crowded as low Earth orbit? For example, the Earth-Moon system's five Lagrange points are gravitationally stable positions useful for scientific missions, whilst geosynchronous orbit is vital for commercial communication satellites. So far, national governments have treated outer space like Antarctica, but theoretically a private company could cause trouble if the law fails to keep up with the technology, in much the same way that the internet has been a happy harbour for media pirates.

Stephen Hawking once said "To confine our attention to terrestrial matters would be to limit the human spirit". Then again, no-one should run before they can walk, never mind fly. We've got a long way to go before we reach the giddy heights of wheel-shaped Hiltons, but as resources dwindle and our population soars, at some point it will presumably become a necessity to undertake commercial space ventures, rather than just move Monte Carlo into orbit. Now, where's the best investment going to be: an acre of Mars or two on the Moon?

Monday 25 June 2012

Ultramarine and ultraviolet: scientific theories and technological techniques in contemporary art

If one of your first thoughts when considering science is of a scruffy-headed physicist chalking equations on a blackboard - interactive whiteboards somehow being not quite the same - then it's easy to see how the subject might offer limited appeal to artists. So is it possible in our visually sophisticated society to create satisfying works of art that utilise elements of scientific thought processes, theories or techniques?

It's difficult to define what constitutes contemporary art, since the majority of people seemingly find it difficult to relate to installations, video art or ready-mades, never mind more traditional media. On the other hand, it can be argued that scientists might have a sense of aesthetic that differs profoundly from the mainstream. A well-known example of this was electro-magnetism pioneer James Clerk Maxwell's addition of a term to an equation in order to achieve an aesthetic balance, prior to him working out the actual meaning of the term.  Novelist and physicist Alan Lightman promotes the notion that scientists have a difference perspective on aesthetics, from the familiar consideration of particle symmetries to more abstruse mathematical harmonies. He describes Steven Weinberg's 1967 paper on the weak nuclear interaction in these terms: "to a physicist, (this) Langrangian…is a work of art." As someone of very limited mathematical ability like me it might as well be written in ancient cuneiform, but you can judge for yourself below:


But then aren't all aesthetic judgements subjective? One familiar chain of urban myths concerns art galleries who have suffered the embarrassment of finding their installations thrown out by over-zealous cleaners who were unaware the material was art. This leads to the interesting point that although much contemporary art is roundly ignored outside the cognoscenti, new technology and the social changes engendered by it, especially mobile communications and the World Wide Web, have been rapidly assimilated and rarely questioned. When it comes to the shock of the new, scientific ideas and the resulting technology appear much more comfortable than post-Second World War art. Or should that be qualified by the statement that if the technology is seen (albeit via persuasive advertising) as an improvement to everyday life, then it will be unquestioningly accepted, whereas art is ignored since it is rarely seen as serving a purpose?

At this point it might be good to consider two distinct approaches to how the two disciplines can be integrated:
  1. visual representations of and/or responses to science
  2. the use of scientific theories and methods to produce art
Approach 1:
In the Eighteenth Century Joseph Wright of Derby produced several atmospheric scenes of experiments, but the art history of the past century has made such clear-cut reportage unfashionable. The visual sophistication of our age would probably deem equivalent work today as both pedestrian and irrelevant to contemporary needs. After all, a straightforward painting of the Large Hadron Collider or a theorist lecturing in front of an equation-covered black board would hardly prove satisfying either from an aesthetic standpoint or as journalistic commentary. Changing technology has also eliminated the innate visual romanticism of peering through the eyepiece of a microscope or telescope; sitting at a computer screen is hardly inspiring material for the heirs to Wright of Derby.

Over the years I've attended several exhibitions that emphasised collaborations between both disciplines and have to confess I usually find the works have little depth beyond obvious, facile connections. Last year I saw a series of works reminiscent of my juvenilia (see the previous post). It consisted of a sequence of photographs of birds in flight, overlaid with the relevant motion equations. A slightly better result comes from the world of fashion, via collaboration between designer Helen Storey and her developmental biologist sister Kate. In the late 1990s they created a series of dresses elucidating the first thousand hours of human life, from fertilization through to recognizable human form.

One of my favourite examples is Yukinori Yanagi's World Flag Ant Farm, in which ants were introduced into a series of interconnected Perspex boxes containing national flags made of coloured sand. Once the human artist finished the initial setup, the wandering ants rearranged the pictorial elements as they used the sand to construct their colony. Yanagi stated his intention was to examine how much the animals rely on programmed instructions rather than free thought, but ironically the end result appeared far more expressive of individual freedom than the robot-like mentality considered essential for a hive mind.

Since 2005 Princeton University has been holding an irregular Art of Science competition, but again the resonance of the work varies enormously. Many entries are photographs of experiments or equipment, frequently at nano- to microscopic scales: good to look at but nothing that could not be faked by a skilled Photoshop user. However, a few submissions have proven to be the ultimate achievement of an aesthetic work integrated within an active experiment, including how computer memory degrades following power loss and a study of individual ants within a colony by painting unique patterns of dots on them. By and large though, most examples I have seen are woefully inadequate attempts to combine art and science.

Approach 2:
Originating with Hamlet's dictum to actors, it has been said that art's task is to hold a mirror up to nature. There have been concerted efforts by artists to deconstruct the world by adapting scientific knowledge, from the Impressionists attempt to understand how objects are modelled by light (consider Monet's haystacks and Rouen cathedral at different times of day and year), via the Pointillist's experiments to understand how the eye builds an image from minute elements, to the Futurists and Vorticists attempts to create apparent movement in a still image. Now that science shows us brave new worlds (apologies for mixing my Shakespeares) via electron microscopes, telescopes in numerous wavelengths, etc., what attempts have been made to illustrate this?

Luke Jerram is a colour-blind artist who has created glass sculptures of viruses at approximately one million times life size. What is so interesting apart from the novelty value of the subject matter is that unlike most representations in popular science books, the sculptures are transparent and therefore colourless. The works therefore immediately impart useful knowledge: viruses exist at a scale below the wavelengths of visible light and so cannot be the beautiful if  randomly-hued images we see in computer-generated illustrations. In fact, the only direct visualisation of viruses is produced by high resolution, transmission electron microscopy, the results being monochromatic, grainy and from the layman's point of view, distinctly samey. Jerram's works are not only a complex example of art meeting science, but in a tribute to their accuracy, have been used in medical texts and journals.

American artist Hunter Cole has created interesting works using techniques derived from her geneticist background, such as drawing in bioluminescent bacteria. At an even more experimental level, Brazilian Eduardo Kac has not just used life forms as media but has created novelty organisms as the artworks themselves, such as a fluorescing rabbit courtesy of a jellyfish protein gene; Doctor Frankenstein, come on down! Finally, at yet another step, Luke Jerram's 2007 Dream Director installation even made the viewer the subject of an experiment, although not exactly under laboratory conditions: visitors could stay in the gallery overnight, sleeping in pods which played themed sounds trigged by their own rapid eye movement.

If there is anything the recent history of science, especially cutting-edge physics, has taught us, it is that we need metaphors to visualise ideas that cannot be directly observed by our limited senses. But as astrophysicist and science writer John Gribbin has frequently pointed out, linguistic metaphor is often inadequate to the task, causing the analogy to return upon itself. Thus without help from the visual arts, anyone who isn't a maths genius has little hope of understanding the more arcane aspects of post-classical physics. Both art and science challenge perceptions, but it is likely that the latter will increasingly need the former to elucidate novel facts and theories. So any artist seeking a purpose need look no further: here's to many a fruitful collaboration!