Showing posts with label Niels Bohr. Show all posts
Showing posts with label Niels Bohr. Show all posts

Friday, 11 August 2017

From steampunk to Star Trek: the interwoven strands between science, technology and consumer design

With Raspberry Pi computers having sold over eleven million units by the end of last year, consumer interest in older technology appears to have become big business. Even such decidedly old-school devices as crystal radio kits are selling well, whilst replicas of vintage telescopes are proof that not everyone has a desire for the cutting-edge. I'm not sure why this is so, but since even instant Polaroid-type cameras are now available again - albeit with a cute, toy-like styling - perhaps manufacturers are just capitalising on a widespread desire to appear slightly out of the ordinary. Even so, such products are far closer to the mainstream than left field: instant-developing cameras for example now reach worldwide sales of over five million per year. That's hardly a niche market!

Polaroid cameras aside, could it be the desire for a less minimal aesthetic that is driving such purchases? Older technology, especially if it is pre-integrated circuit, has a decidedly quaint look to it, sometimes with textures - and smells - to match. As an aside, it's interesting that whilst on the one hand current miniaturisation has reduced energy consumption for many smaller pieces of technology from the Frankenstein laboratory appearance of valve-based computing and room-sized mainframes to the smart watch etal, the giant scale of cutting-edge technology projects require immense amounts of energy, with nuclear fusion reactors presumably having overtaken the previous perennial favourite example of space rockets when it comes to power usage.

The interface between sci-tech aesthetics and non-scientific design is a complicated one: it used to be the case that consumer or amateur appliances were scaled-down versions of professional devices, or could even be home-made, for example telescopes or crystal radios. Nowadays there is a massive difference between the equipment in high-tech laboratories and the average home; even consumer-level 3D printers won't be able to reproduce gravity wave detectors or CRISPR-Cas9 genome editing tools any time soon.

The current trend in favour - or at least acknowledgement - of sustainable development, is helping to nullify the pervasive Victorian notion that bigger, faster, noisier (and smellier) is equated with progress. It's therefore interesting to consider the interaction of scientific ideas and instruments, new technology and consumerism over the past century or so. To my mind, there appear to be five main phases since the late Victorian period:
  1. Imperial steam
  2. Streamlining and speed
  3. The Atomic Age
  4. Minimalism and information technology
  5. Virtual light

1) Imperial steam

In the period from the late Nineteenth Century's first generation of professional scientists up to the First World War, there appears to have been an untrammelled optimism for all things technological. Brass, iron, wood and leather devices - frequently steam-powered - created an aesthetic that seemingly without effort has an aura of romance to modern eyes.

Although today's steampunk/alternative history movement is indebted to later authors, especially Michael Moorcock, as much as it is to Jules Verne and H.G. Wells, the latter pair are only the two most famous of a whole legion of late Victorian and Edwardian writers who extolled - and occasionally agonised over - the wonders of the machine age.

I must confess I much prefer steam engines to electric or diesel locomotives, despite the noise, smuts and burning of fossil fuels. Although the pistons and connecting rods of these locomotives might be the epitome of the design from this phase, it should be remembered that it was not unknown for Victorian engineers to add fluted columns and cornucopia reliefs to their cast iron and brass machinery, echoes of a pre-industrial past. An attempt was being made, however crude, to tie together the might of steam power to the Classical civilisations that failed to go beyond the aeolipile toy turbine and the Antikythera mechanism.

2) Streamlining and speed

From around 1910, the fine arts and then decorative arts developed new styles obsessed with mechanical movement, especially speed. The dynamic work of the Futurists led the way, depicting the increasing pace of life in an age when humans and machines were starting to interact ever more frequently. The development of heavier-than-air flight even led to a group of 'aeropainters' whose work stemmed from their experience of flying.

Although scientific devices still had some of the Rube Goldberg/Heath Robinson appearance of their Nineteenth Century forebears, both consumer goods and vehicles picked up the concept of streamlining to suggest a sophisticated, future-orientated design. Items such as radios and toasters utilised early plastics, stainless steel and chrome to imply a higher level of technology than their interiors actually contained. This is in contrast to land, sea and aerial craft, whereby the practical benefits of streamlining happily coincided with an attractive aesthetic, leading to design classics such as the Supermarine seaplanes (forerunners of the Spitfire) and the world speed record-holding A4 Pacific Class steam locomotives.

3) The Atomic Age

By the 1950s practically anything that could be streamlined was, whether buildings that looked like ocean liners or cars with rocket-like tailfins and dashboards fit for a Dan Dare spaceship. However, a new aesthetic was gaining popularity in the wake of the development of atomic weapons. It seems to have been an ironic move that somewhere between the optimism of an era of exciting new domestic gadgets and the potential for nuclear Armageddon, the Bohr (classical physics) model of the atom itself gained a key place in post-war design.

Combined with rockets and space the imagery could readily be termed 'space cadet', but it wasn't the only area of science to influence wider society. Biological research was undergoing a resurgence, which may explain why stylised x-ray forms, amoebas and bodily organs become ubiquitous on textiles, furnishings, and fashion. Lighting fixtures were a standout example of items utilising designs based on the molecular models used in research laboratories (which famously gave Crick and Watson the edge in winning the race to understand the structure of DNA).

Monumental architecture also sought to represent the world of molecules on a giant scale, culminating in the 102 metre-high Atomium built in Brussels for the 1958 World's Fair. It could be said that never before had science- and technological-inspired imagery been so pervasive in non-STEM arenas.

4) Minimalism and information technology

From the early 1970s the bright, optimistic designs of the previous quarter century were gradually replaced by the cool, monochromatic sophistication of minimalism. Less is more became the ethos, with miniaturisation increasing as solid-state electronics and then integrated circuits became available. A plethora of artificial materials, especially plastics, meant that forms and textures could be incredibly varied if refined.

Perhaps a combination of economic recession, mistrust of authority (including science and a military-led technocracy) and a burgeoning awareness of environmental issues led to the replacement of exuberant colour with muted, natural tones and basic if self-possessed geometries. Consumers could now buy microcomputers and video games consoles; what had previously only existed in high-tech labs or science fiction became commonplace in the household. Sci-fi media began a complex two-way interaction with cutting-edge science; it's amazing to consider that only two decades separated the iPad from its fictional Star Trek: The Next Generation predecessor, the PADD.

5) Virtual light

With ultra high-energy experiments such as nuclear fusion reactors and the ubiquity of digital devices and content, today's science-influenced designs aim to be simulacra of their professional big brothers. As stated earlier, although consumer technology is farther removed from mega-budget science apparatus than ever, the former's emphasis on virtual interfaces is part of a feedback loop between the two widely differing scales.

The blue and green glowing lights of everything from futuristic engines to computer holographic interfaces in many Hollywood blockbusters are representations of both the actual awesome power required by the likes of the Large Hadron Collider and as an analogy for the visually-unspectacular real-life lasers and quantum teleportation, the ultimate fusion (sorry, couldn't resist that one) being the use of the real National Ignition Facility target chamber as the engine core of the USS Enterprise in Star Trek: Into Darkness.

Clearly, this post-industrial/information age aesthetic is likely to be with us for some time to come, as consumer-level devices emulate the cool brilliance of professional STEM equipment; the outer casing is often simple yet elegant, aiming not to distract from the bright glowing pixels that take up so much of our time. Let's hope this seduction by the digital world can be moderated by a desire to keep the natural, material world working.

Tuesday, 29 May 2012

How to be cyantific: connecting the laboratory to the artist's studio

Moving house - or more broadly speaking, hemispheres - last year was a good excuse for a spring clean on an epic scale. One of the items that didn't make the grade even as far as a charity shop was a framed painting I created several decades' ago, a clumsy attempt to describe scientific imagery in acrylics. In front of a false colour radar map of the surface of Venus was the head and neck of a raptor dinosaur above a bowler-hatted figure straight out of Rene Magritte. You can judge the work for yourself below; I seem to remember the bemusement of the framer but as I said at the time, it wasn't meant to be to everyone's taste...

But if my daub was rather wide of the mark, just how successful have attempts been to represent the theory and practice of science in the plastic, non-linear, arts such as painting and sculpture? Whereas musical and mathematical ability seem to readily connect and there has been some admirable science-influenced poetry, by comparison the visual arts are somewhat lacking. Much has been written about the Surrealist's use of psychoanalysis but as this discipline is frequently described as a pseudoscience I've decided to cut through the issue by ignoring it and concentrate on the 'hard' sciences instead.

Combining science and art - or failing to
One of the most difficult issues to resolve (especially for those who accept C.P. Snow's theory of 'two cultures') is that whilst most science books for a general readership describe a linear progression or definitive advancement to the history of science, art has no such obvious arrow of change. After all, a century has passed since the early non-realist movements (Cubism, les Fauves, etc.) but there are plenty of contemporary artists who avoid abstraction. Granted, they are unlikely to win any of the art world's top prizes, but the progression of science and its child technology over the past three or so centuries clearly differentiates the discipline from the arts, both the sequential schools of the West and the 'traditional' aesthetics of other cultures.

Of course, it's usual to differentiate the character of scientists and artists about as far apart as any human behaviour can get, but like most stereotypical ideas it doesn't take much to prove them wildly inaccurate. Anyone aware of Einstein's views ("Imagination is more important than knowledge") or his last unsuccessful decades spent on a unification theory that ignored quantum mechanics will understand that scientists can have as imaginative and colourful personality as any artist. Indeed, the cutting edge of theoretical science, especially physics, may rely on insights and creativity as much as advanced mathematics, a far cry from the popular image of dull, plodding scientists who follow dry, repetitive processes.

Another aspect worth mentioning is that our species appears unique in the ability to create representations of the world that can be recognised as such by most if not all of our species. Despite Congo the chimpanzee gaining enough kudos in the 1950s for Picasso and Miro to buy his paintings, as well as more recent media interest in elephant art works, there is no evidence that under controlled experimental conditions non-human artists can produce obviously realistic images unaided. Then again, could it be that we are so biased in our recognition patterns that we do not identify what passes for realism in other species? Might it be possible that other animals interpret their work as representational when to us it resembles the energetic daubs of toddlers? (This suggests shades of Douglas Adams's dolphins, who considered themselves more intelligent than humans because rather than build cities and fight wars, all do is muck about in water having a good time...)

So where do we start? Firstly, what about unintentional, science-generated art? Over the past decade or so there has been a spate of large format, text-light, coffee table books consisting of images taken by space probes, telescopes and Earth resources satellites. A recent internet success consisted of time lapse photography of the Earth taken by crew aboard the International Space Station; clearly, no-one spent a hundred billion US dollars or so just to make a breath-taking video, but the by-products of the project are a clear example of how science can incidentally create aesthetic work. This isn't just a contemporary phenomenon either: the earliest examples I can think of are Leonardo da Vinci's dissection drawings; in addition to being possibly the most detailed such illustrations until today's non-invasive scanning techniques they are also beautiful works of art in themselves. But then Leonardo's intentions appear to have been to both investigate the natural world for the sheer sake of learning as well as improve his painting technique by knowledge of the underlying anatomy. I wonder if there are any contemporary artists who use MRI technology or similar as a technical aid for their draftsmanship?

At the other end of the spectrum (groan), mathematician Marcus du Sautoy's 2010 BBC TV series The Beauty of Diagrams was an interesting discourse on how certain images created for a scientific purpose have become mainstream visual symbols. From Vitruvian Man, da Vinci's analysis of ideal human proportions, to the double helix diagram of DNA (incidentally first drawn by Odile Crick, an artist married to a scientist), these works integrate the transmission of information with a beautiful aesthetic. The latter example is particularly interesting in that the attempt to illustrate complex, miniscule structures in an easily understandable format has since become a mainstay of science diagrams, shorthand that is frequently interpreted by the non-specialist as a much closer representation of reality than the schematic it really is.

Physicist and writer John Gribbin has often stated that the cutting edge science of the past century, especially physics, has had to resort to allegory to describe situations at scales far removed from human sensual experience. This implies that an essential method by which science can be conveyed is via the written metaphor and visual symbolism. As we delve further into new phenomena, science may increasingly rely on art to describe ideas that cannot for the foreseeable future be glimpsed at first hand. But ironically this could have a deleterious effect on public understanding if the model is too successful, for then it becomes difficult to supplant with a more accurate theory. An obvious example is the architecture of the atom, with the familiar if highly inaccurate classical model of electrons orbiting the nucleus like a miniature solar system prevalent long after the development of quantum electrodynamics.

You might ask how difficult would it be to describe probabilities and world paths in conventional art media, but Cubism was a style attempting to combine different viewpoints of a subject into one composition. If this appears too simplistic, then it may seem more convincing once you know that physicist Niels Bohr was inspired by Cubist theories during the development of the Complementarity Principle on the wave-particle duality. Cubism is of course only one of the more obvious visual tricks but even the most photo-realistic painting requires techniques to convert three dimensional reality (well four, if you want to include time), into two dimensions. How often do we consider this conversion process in itself, which relies on a series of visual formula to produce the desired result? It may not be science, but the production of most art isn't a haphazard or random series of actions.

It's easy to suggest that a fundamental difference between science and the plastic arts is that the former is ideally built of a combination of method and results whilst the latter is firmly biased towards the works alone. An exception can be seen in abstract expressionism, a.k.a. action painting: at art college we were taught that to practitioners of this school the moment of creation was at least as important as the final result. To this end, Jackson Pollock was filmed painting from as early as 1950, with numerous other artists of various movements following suit soon after. In general though, the art world runs on the rich individuals and corporations who buy the works, not the theories of critics.

And what of art theory? Most of it isn't relevant here, but one of the fundamentals of composition is the harmony and rhythm generated by the use of mathematical ratios and sequences. The Golden section and Fibonacci series are frequently found in organic structures, so in a sense their use is a confirmation of that old adage that the purpose of art is to hold a mirror up to nature. If that sounds trite, why not examine works by contemporary artists inspired by scientific theories or methodologies? That's coming in the next post...