Showing posts with label Square Kilometre Array. Show all posts
Showing posts with label Square Kilometre Array. Show all posts

Monday, 11 February 2019

The Square Kilometre Array: is it the wrong big science for New Zealand?

I've previously written about the problems besetting some mega-budget science projects and the notion that perhaps they should lose precedence to smaller programmes with quicker returns to both science and society. Of course there are advantages to long-term international STEM collaboration, including social, economic and political benefits, but there is a good case for claiming that projects are sometimes initiated without a full appreciation of the details.

Take for example, the Square Kilometre Array or SKA, the largest science project New Zealand has ever been involved with. Headquartered at the UK's Jodrell Bank Observatory (incidentally, I've been there a few times and it's well worth a visit if you're in the vicinity), twelve key nations are collaborating to construct two main arrays, one in Australia and the other in South Africa and some of its neighbours. The combined arrays will have a sensitivity fifty times greater than previous radio telescopes, allowing them to survey the sky far faster than has been done before and look back in time much earlier than current instruments.

But such paradigm-shifting specifications come with a very high price tag – and the funding sources are yet to be finalised. The €1.8 billion project is scheduled to start Phase 1 construction in 2024 and aims to begin observations four years later. Research will include a wide range of fundamental astrophysical questions, from exploring the very early universe only 300,000 years after the Big Bang to testing general relativity, gaining information on dark energy and even some SETI research.

The New Zealand contribution is organised via the Australia-New Zealand SKA Coordination Committee (ANZSCC) and is geared towards data processing and storage. The Central Signal Processor and Science Data Processor are fundamental components of the project, since the radio telescopes are expected to generate more data than the world currently stores.  As well as closer collaboration between the scientists and engineers of various nations, one of the aims of SKA is to become a source of public science education, something I have repeatedly pointed out is in desperate need of improvement.

So if this all seems so promising, why has the New Zealand Government announced that it may pull back from committing the outstanding NZ$23 million (equal to less than 10% of Australia's funding)? To date, the country has paid less than NZ$3 million. In 2015 I discussed the danger of the country falling behind in cutting-edge STEM research and Rocket Lab aside (which is after all, an American-owned company despite its kiwi founder) the situation hasn't really changed. so why did Research, Science and Innovation Minister Megan Woods declare this potential about turn, which may well relegate New Zealand to associate membership status?

The initial answer appears to be one of pure economics. Although the project is generating development of world-class computer technology, a report has questioned the long-term benefits from investing such comparatively large sums of public money. India is already an associate member while Germany has been considering a similar downgrade for some years and Canada may follow suit. The project is already  a decade behind schedule and New Zealand had hoped to be an array-hosting nation but lost out due to a lower bid from South Africa. SKA is run by a same-name not-for-profit organisation and so presumably any financial rewards are of a secondary nature (perhaps along the lines of patents or new technologies that can be repurposed elsewhere).

Interestingly, New Zealand's science community has been divided on the issue. While Auckland University of Technology and Victoria University of Wellington have objected to the downgrade, the university of Auckland's head of physics Richard Easther has support the Ministry of Business, Innovation and Employment (MBIE) decision, saying that far from providing financial and long-term science benefits (in both applied computing and astrophysical data), SKA is a white elephant, hinting that it might well be obsolete by the time it starts gathering data.

Another University of Auckland astrophysicist, Dr Nick Rattenbury, argues that the nation's public funding infrastructure is currently too primitive for it to become involved in such international mega-budget STEM projects. I simply don't know enough detail to question whether such adages as you need to speculate in order to accumulate apply here; it's clearly a well-thought out programme, unlike say the politically-motivated yet vague and probably unworkable Predator Free 2050 scheme.

If SKA was committed to solving an immediate practical problem in the fields of say, environmental degradation, food and water production, or medicine, I would probably have no hesitation in supporting it whole-heartedly, regardless of the cost to the public purse. But the universe has been around almost fourteen billion years, so I for one don't mind if it holds onto a few of its fundamental secrets for a little while longer.

Wednesday, 24 January 2018

Low-key wonders: how small-scale innovation can aid the developing world

The success of mega-budget science experiments such as the Large Hadron Collider (LHC) and Laser Interferometer Gravitational-Wave Observatory (LIGO) has quite rightly generated widespread praise for these technological marvels. This has led to plenty of discussion regarding similar international endeavours now in the pipeline, such as the Square Kilometre Array (SKA). However, numerous far smaller, cheaper projects have been largely overlooked, despite their potential to offer practical improvements to millions of humans and in some cases, to the environment as well. Although not nearly as glamorous as their far larger counterparts, these innovative schemes - at least in application if not necessarily in technology - are surely as important and deserve more attention than that so far given to them.

The projects in question are aimed towards improving the quality of life in developing nations and as such tend to fall into one of a few key categories:
  1. Fuel efficiency and non-fossil fuel energy sources
  2. Water, nutrition and food preparation
  3. Medicine and hygiene
  4. Low-cost consumer electronics
The companies and inventors conceiving these schemes are based around the world in both developing and developed countries, with most having little if any association with multi-national manufacturers. Indeed, such has been the lack of interest from traditional industry that some of the projects have relied on a few far-sighted entrepreneurs or crowdfunding schemes. In some cases it appears that the less sophisticated the technology being developed, the more successful the product; clearly, lack of funding for research and development can limit the efficiency and reliability of new devices. Although the World Bank estimates that the crowdfunding market could generate ninety to ninety-five billion US dollars by 2030, the lack of secure financial infrastructure and limited ecommerce experience in developing nations mean that its infoDev global partnership programme is finding it tricky to help small-scale innovation take off in these countries.

1. Fuel efficiency and non-fossil fuel energy sources

An irregular electricity supply if available at all is still a prominent problem in developing countries, so millions of poor households rely on dangerous and inefficient forms of lighting and cooking. Kerosene lamps for example, in addition to causing health issues from smoke inhalation are responsible for three percent of the world's carbon dioxide emissions. One simple yet effective solution comes in the form of the GravityLight, whereby a bag of slowly descending ballast drives a generator to power an LED light for about twenty minutes before it needs resetting.

Other devices are less innovative but still very useful, such as Princeton University-developed SunSaluter, one of several compact solar panel products being designed to optimise energy collection, in this particular instance with the ability to rotate and so follow the sun across the sky. Another alternative energy scheme currently being prototyped is called ROTOR and uses a small floating device to generate hydro-electric power. These local-level systems are not only environmentally friendly but would relieve poor families of having to buy fossil fuels such as kerosene. Unfortunately, many are still at the development stage and lack of funding usually means slow progress in implementation.

Another invention that utilises existing components without any moving parts is the Eco-Cooler, which uses halved plastic bottles to drastically reduce temperatures in houses without needing a power source. This may not be cutting edge technology per se, but as per a previous post from 2010, this simple ingenious solution may prove to a wider public how they can help themselves and the environment simultaneously.

2. Water, nutrition and food preparation

If water is the new oil then devices that can heat and/or purify it at the same time as saving money and lessening environmental impact cannot be far behind in importance. Inventions in this category range from incremental improvements (i.e. more efficient versions of conventional products such as the Berkeley-Darfur Stove) to the innovative Jompy Water Boiler prototype, which heats water to purify it at the same time as cooking food and saving fuel.

Water purification systems are being tested, as are waste recyclers that can convert household organic waste at low-cost into drinking water or even cooking gas. These devices are being developed to use little or no power to operate, and in the case of Indian conglomerate Tata's Swach water filter, a combination of traditional rice husk ash and nanosilver forms the active ingredients. As I've discussed elsewhere nanosilver is not the most environmentally friendly of substances but at twenty-five US dollars this device has become widespread over the past eight years, presumably saving the lives of innumerable children in regions without a safe water supply.

At the other end, so to speak, the UK's Cranfield University has received funding from the Bill and Melinda Gates Foundation to complete development of the self-powered Nano Membrane Toilet. This is one of several such designs that don't require connection to plumbing as they work without an external water supply or outflow. Indeed, the Cranfield design is a net producer of water and possibly even energy too.

Developing countries are also seeking ways to improve nutrition themselves, such as the seventeen African nations involved in the Sweetpotato for Profit and Health Initiative. This ten-year programme aims to reduce vitamin A deficiency by breeding a new strain of sweet potato, especially aimed at households with very young children. It may not involve cutting-edge genetic modification, but just the work required to overcome the social and economic conservatism of the region is probably as key to success as the agricultural science.

3. Medicine and hygiene

In a crossover between nutrition and medicine, the advertising and marketing agency Grey Singapore has been involved with the distribution of the Life Saving Dot, an iodine-rich bindi designed to cure iodine deficiency in many rural Indian women. In this instance, the use of the traditional design means that the product shouldn't face suspicion from its target market.

In 2010 a German former teacher Martin Aufmuth began developing a simple method to quickly produce pairs of spectacles without the need for a power supply. His OneDollarGlasses are now selling worldwide, further proof that low-tech ingenuity can generate enormous benefits.

More high-tech schemes are also in development that could prove to be extremely efficient yet relatively low-cost life savers. Médecins Sans Frontières has been studying the use of both 3-D printing and virtual reality for setting up field hospitals while the e-NABLING the Future project coordinates volunteers who can supply 3-D printed items such as prosthetics. The disaster-relief NGO Field Ready aims to provide 'faster, cheaper and better' aid via the manufacture of 3-D printed elements, including medical items, a sure sign that this technology is probably the best method of rapidly producing custom components in regions lacking sophisticated infrastructure.

Solar power is also being co-opted to replace conventional batteries in devices such as hearing aids, with the Botswana-based Deaftronics and its Solar Ear unit a pioneer in this field. Presumably, as smart clothing technology becomes more common, such devices will be able to use the wearer's own motion to supply the necessary power.

Pharmaceutical distribution and illness diagnosis techniques are also on the verge of radical improvements, particularly in Africa. An example of the former is the Ghanaian-based mPedigree's use of a free SMS code to confirm that the pharmaceutical is genuine. MIT research is aiding the latter, thanks to a series of paper strip tests for conditions ranging from Ebola to dengue fever.

4. Low-cost consumer electronics

The first example I came across of such devices was British inventor Trevor Baylis' wind-up radio, developed in 1995. Having been rejected by mainstream radio manufacturers, Baylis was lucky to gain the support of entrepreneurs so that he could achieve mass-production.

One of the few major companies to take an interest in the bottom end of the market has been Vodafone, whose 150 and 250 model mobile phones appeared in 2010 and were aimed solely at developing nations; the importance of rapid yet cheap communication in rural areas should not be underestimated. Other devices have not been so lucky with their manufacturers, with the world's cheapest tablets, the Indian Government-promoted Ubislate/Aakash range, suffering from so many design and build issues that the device is unlikely to satisfy its intended market any time soon.

Although the Aakash fiasco may inhibit other Western corporations from wanting to engage in similar projects, the mini paradigm shifts that some of these projects have engendered could well generate a two-way interaction between developed and developing nations. Rather than playing safe by fiddling with small iterations based on existing designs, the potential for wholly new products manufactured by smarter, more efficient methods has been given a solid proving ground by some of the examples described above. This 'trickle up' method may prove to be the way in which multinationals get involved in this level of project; needless to say, the timing couldn't be more apt.

From long-lasting, low voltage light bulbs to non-fossil fuel road vehicles, there is a multitude of examples of how big business has traditionally stifled innovation if it meant potential loss of profit. In some cases, shortened product lifespan and incremental upgrade release cycles have forced consumers to participate in a planned obsolescence programme, at the cost of the wider environment as well as customer bank balance. With talk of a several trillion US dollar funding gap in the United Nations' sustainable development goals - which the USA is now more than ever unwilling to subsidise - any means to replace aid relief with self-sustaining processes and local manufacturing are to be welcomed. There's enormous potential out there for developing nations to improve dramatically without relying on charitable hand-outs or the dubious support of big business. Hopefully the flow of  inventors, entrepreneurs and volunteers will continue building that future.

Tuesday, 28 November 2017

Research without borders: why international cooperation is good for STEM

I've just finished reading Bryan Sykes' (okay, I know he's a bit controversial) The Seven Daughters of Eve, about the development of mitochondrial DNA research for population genetics. One chapter mentioned Dr Sykes' discovery of the parallel work of Hans-Jürgen Bandelt, who's Mathematics Genealogy Project provided a structure diagram perfectly suited to explaining Sykes' own evolutionary branching results. This discovery occurred largely by chance, suggesting that small research groups must rely either on serendipity or have knowledge of the latest professional papers in order to find other teams who's work might be useful.

This implies that the more international the character of scientific and technological research, the more likely there will be such fortuitous occurrences. Britain's tortuous path out of the European Union has led various organisations on both sides of the Channel to claim that this can only damage British STEM research. The Francis Crick Institute, a London-based biomedical research centre that opened last year, has staff originating from over seventy nations. This size and type of establishment cannot possibly rely on being supplied with researchers from just one nation. Yet EU scientists resident in Britain have felt 'less welcome' since the Brexit referendum, implying a potential loss of expertise in the event of a mass withdrawal.

In recent years, European Union research donations to the UK have exceeded Britain's own contributions by £3 billion, meaning that the additional £300 million newly announced for research and development over the coming four years is only ten percent of what the EU has provided - and the UK Government is clearly looking to the private sector to make up the shortfall. It should also be recognised that although there are high numbers of non-British nationals working in Britain's STEM sector, the country also has a fair number of its own STEM professionals working overseas in EU nations.

The United Kingdom is home to highly expensive, long-term projects that require overseas funding and expertise, including the Oxfordshire-based Joint European Torus nuclear fusion facility. British funding and staff also contribute to numerous big-budget international projects, from the EU-driven Copernicus Earth observation satellite programme to the non-EU CERN. The latter is best-known for the Large Hadron Collider, the occasional research home of physicist and media star Brian Cox (how does he find the time?) and involves twenty-two key nations plus researchers from more than eighty other countries. Despite the intention to stay involved in at least the non-EU projects, surveys suggest that post-Brexit there will be greater numbers of British STEM professionals moving abroad. Indeed, in the past year some American institutions have actively pursued the notion of recruiting more British scientists and engineers.

Of course, the UK is far from unique in being involved in so many projects requiring international cooperation. Thirty nations are collaborating on the US-based Deep Underground Neutrino Experiment (DUNE); the recently-successful Laser Interferometer Gravitational-Wave Observatory (LIGO) involves staff from eighteen countries; and the Square Kilometre Array radio telescope project utilises researchers of more than twenty nationalities. Although the USA has a large population when compared to European nations, one report from 2004 states that approaching half of US physicists were born overseas. Clearly, these projects are deeply indebted to non-nationals.

It isn't just STEM professionals that rely on journeying cross-border, either. Foreign science and technology students make up considerable percentages in some developed countries: in recent years, over 25% of the USA's STEM graduate students and even higher numbers of its master's degree and doctorate students were not born there. Canada, Australia, New Zealand and several European countries have similar statistics, with Indian and Chinese students making up a large proportion of those studying abroad.

As a small nation with severely limited resources for research, New Zealand does extremely well out of the financial contributions from foreign students. Each PhD student spends an average of NZ$175,000 on fees and living costs, never mind additional revenue from the likes of family holidays, so clearly the economics alone make sense. Non-nationals can also introduce new perspectives and different approaches, potentially lessening inflexibility due to cultural mind sets. In recent years, two New Zealand-based scientists, microbiologist Dr Siouxsie Wiles and nanotechnologist Dr Michelle Dickinson (A.K.A. Nanogirl) have risen to prominence thanks to their fantastic science communication work, including with children. Both were born in the UK, but New Zealand sci-comm would be substantially poorer without their efforts. Could it be that their sense of perspective homed in on a need that locally-raised scientists failed to recognise?

This combination of open borders for STEM professionals and international collaboration on expensive projects proves if anything that science cannot be separated from society as a whole. Publically-funded research requires not only a government willing to see beyond its short-term spell in office but a level of state education that satisfies the general populace as to why public money should be granted for such undertakings. Whilst I have previously discussed the issues surrounding the use of state funding for mega-budget research with no obvious practical application, the merits of each project should still be discussed on an individual basis. In addition, and as a rule of thumb, it seems that the larger the project, the almost certain increase in the percentage of non-nationals required to staff it.

The anti-Brexit views of prominent British scientists such as Brian Cox and the Astronomer Royal, Lord Rees of Ludlow, are well known. Let's just hope that the rising xenophobia and anti-immigration feeling that led to Brexit doesn't stand for 'brain exit'. There's been enough of that already and no nation - not even the USA - has enough brain power or funding to go it alone on the projects that really need prompt attention (in case you're in any doubt, alternative energy sources and climate change mitigation spring to mind). Shortly before the Brexit referendum, Professor Stephen Hawking said: "Gone are the days when we could stand on our own, against the world. We need to be part of a larger group of nations." Well if that's not obvious, I don't know what is!

Thursday, 29 October 2015

Cutting edge: can New Zealand hold its own as an innovation nation?

On a recent trip to MOTAT (for those not in the know, Auckland's Museum of Transport and Technology) I was looking around a restored Edwardian period school room when I came across a list of classroom rules. One in particular stood out: 'Do not ask questions'. How times have changed! As the late New Zealand physicist Sir Paul Callaghan once said: "You don't need to teach a child curiosity. Curiosity is innate. You just have to be careful not to quash it. This is the challenge for the teacher - to foster and guide that curiosity." But are there enough resources in New Zealand today to support that curiosity, not just in children but for science and technology professionals too?

In the shadow of the seemingly endless Rugby World Cup coverage, the New Zealand Science and Innovation Minister Steven Joyce has launched the National Statement of Science Investment (NSSI). Although investment in the science and technology sector has increased within the past decade, I've come across various kiwi scientists with prominent social media profiles who constantly vent their frustration at the amount of timing spent bidding for funds - only for the majority of those bids to fail.

New Zealand is somewhat towards the lower end of the scale in government investment in research and development, but the nation appears even more hampered by apathy from the private sector. A key aim of the NSSI is to attract more private funding towards science, technology and engineering but with a very small internal market and many of the larger corporations controlled from overseas, the record to date hasn't been particularly good. Comparisons to other small developed nations bear this out. For example, the Republic of Ireland has only a slightly larger population than New Zealand but double the industrial research and development spend as a percentage of GDP. Other European countries fare even better, with Finland spending correspondingly more than quadruple New Zealand's figure!

Perhaps it is not surprising then to hear that after a comparatively high quality education, many New Zealand post-graduates and science professionals seek opportunities abroad. Not that this is a recent phenomenon; all three New Zealand-born science Nobel laureates spent their professional lives working in the UK, USA or Canada. For a nation that produces a relatively large output of STEM (science, technology, engineering and mathematics) articles, the impression is that kiwi ingenuity can only make limited resources go so far. As long as industry fails to support more than a paltry amount of research, there just won't be enough funding to support native talent.

But it isn't all doom and gloom. In addition to projects aimed at short-term improvements in native sectors such as the dairy industry, New Zealand is one of ten nations involved in the Square Kilometre Array radio telescope. However, investment for this long-term project - one apparently lacking immediate practical benefits too - appears to be primarily via public rather than private finance.

You have only to consider New Zealand retail prices compared to other developed nations to understand that a combination of a remote geographic location and low population size and density are prime economic movers. This doesn't prevent canny kiwis from attempting STEM innovations, although it frequently ends with large-scale development implemented in larger, wealthier nations.

Two recent examples show these issues in vivid detail. Award-winning high school student Ayla Hutchinson invented the Kindling Cracker, a much safer way to split wood kindling than the traditional axe-on-a-stump method. However, when her Auckland-based manufacturers were unable to produce the device without a large cost increase, the young inventor was forced to seek an overseas company to produce it.

Another success story of Kiwi ingenuity is the field-leading wireless power technology firm PowerbyProxi, which in the past few years has formed a business relationship with international giants such as Samsung and Texas Instruments. One key issue they have faced in their home nation has been a shortage of skilled staff, further evidence that a brain drain on a small population can lead to the ultimate irony of having to recruit specialists from abroad. The NSSI and last year's strategic plan A Nation of Curious Minds - He Whenua Hihiri i te Mahara are aiming to address this via changes within state education and citizen science. But will the private sector follow suit and step up to the mark in order to give the next generation of New Zealand scientists a 'fair go'?

New Zealand has long been acclaimed as punching above its weight in many arenas, not just rugby, but its future in STEM fields seems uncertain. I wonder if the canny kiwi/pioneer attitude (think: number eight fencing wire solutions) that has been so successful in the past is still suitable at a time when even if not requiring LHC mega-budgets, much science and technology innovation requires stable funding sources? The Government clearly have the country's long-term prospects in mind with the new strategies, but without adequate private sector finance the next generation of STEM graduates might well consider pursuing their careers abroad. Considering the nation-specific developments in science and technology that the future clearly requires, this would not be a good thing!