Showing posts with label T.H. Huxley. Show all posts
Showing posts with label T.H. Huxley. Show all posts

Sunday, 29 November 2015

Local heroes: helping the ecosystem – with or without leaving your backyard

Thomas Henry Huxley, A.K.A. Darwin's Bulldog and the man who coined the word 'agnostic' (and less-than-incidentally, my hero) once remarked that "We live in a world which is full of misery and ignorance, and the plain duty of each and all of us is to try to make the little corner he can influence somewhat less miserable and somewhat less ignorant than it was before he entered it." With this years' UN Climate Change Conference about to start in Paris, there have been around 2000 marches around the world as current generations advise their governments that cleaning up our planet cannot be postponed any longer.

Meanwhile, like something out of a typical piece of Hollywood schmaltz, New Zealand law student Sarah Thomson is taking her country's government to court over lack of progress on climate change. Unfortunately as this is the real world - and since the UN's Inter-governmental Panel on Climate Change (IPCC) targets aren't legally binding at nation-state level - the outcome is unlikely to provoke a Spielberg-style public cheer when the case is decided.

From a New Zealand-centric view, we may seem removed from the overcrowded, polluted hell-holes scattered around the world, but there are plenty of problems in store for this little corner of paradise, and not just from climate change. New Zealanders have only recent begun to understand that far from the '100% Pure' tourist brand, there has been a long-term degradation to their ecology, primarily from invasive species and an unsustainable level of development.

But although we may seem powerless in a wider context, individuals in any nation can still make a difference to help maintain or even restore their local environment without a great effort and at minimal cost. You might think: why bother? One household can't help an entire planet! But then, if everyone dropped one piece of litter every day we would rapidly become swamped with rubbish, so the antithesis holds true. Whilst the following are tailored towards New Zealand, the majority of actions can be undertaken anywhere. So enough proselytising: on with the show!

1) Reducing your carbon footprint. This week the New Zealand Herald website launched a climate action tool to show where households could reduce their greenhouse gas emissions. I'm never fond of quoting statistics, but if the country's emissions really have increased by the quoted 21% since 1990, then clearly something is going very wrong. Among the most basic methods - that at the same time can reduce household spending - are reusing bags when grocery shopping; and cutting down on food waste (which in New Zealand equates to half of household rubbish) by buying less and then having to bin out-of-date food. It's not rocket science!

2) Careful consumerism. Stop being a slave to fashion and don't just upgrade to a new smartphone when the old one still works perfectly well. It may be difficult to cut down on methane-hefty dairy products, but it's easy to avoid items that contain environmentally unfriendly materials, such as nanosilver or palm oil that comes from unsustainable sources. After all, two American girl guides spend five years on a successful mission for clear food labelling and the introduction of palm oil from deforestation-free sources. If they can do it, why can't we all?

3) Reduce, reuse and recycle. I discussed this back in 2010 and think that all the points are still relevant. Again, this can actually save money. If you have a garden, then a tiger worm farm is a pretty good way to get free fertiliser and soil conditioner from the likes of vegetable peelings, egg shells, tea bags and even discarded hair.

4) Encouraging wildlife. Talking of gardens, you can easily help the local fauna with the right type of vegetation and feeders. Of course, it's not all plain sailing: although I feed native silvereye birds during the winter with fruit, my seed feeders are most likely to be utilised by non-native species imported to New Zealand from the UK in the late Nineteenth Century. You win some, you lose some.

5) Discouraging invasive species. From marine fan worms on the underside of ships' hulls to pet cats, New Zealand's native species have long faced the onslaught of aggressive outsiders. Current biosecurity regulations are very important, but in NZ sometimes have the ring of the stable door about them, in this case with the (foreign) horses having bolted into the stable - and promptly munched their way through much of the local biota. One simple thing I have done is to discourage South African praying mantises by methods such as changing garden planting and moving hatchlings to more conspicuous places in the garden where birds might find them. In this way numbers have reduced from hundreds of individuals three years' ago to seeing just one hatchling this year - and no adults - despite carefully examination of the garden. As for cats, don't get me started! NZ has over 1.4 million of them, and whoever can prevent them catching native birds and lizards would probably deserve a Nobel prize.

6) Eco-activities. Talking of trees, various local groups are more than happy to accept volunteers for tree-planting, pest trapping and litter removal schemes. In New Zealand, Tiritiri Matangi has gone from being a denuded patch of scrub to an island sanctuary for endangered bird species in just three decades, largely thanks to volunteers planting over 280,000 trees. As for litter, volunteer beach patrols are unfortunately a necessity, as an example from 2011 shows: 130,000 pieces of rubbish were collected from the uninhabited island of Rangitoto in just one day.

7) Joining organisations. There are plenty of societies ready, willing and able to use membership funds for ecological activities, from global giants such as the World Wide Fund for Nature to local groups such as New Zealand's Forest and Bird. As a member of latter I've been pleased to study their new 25-year strategic plan, aimed on raising important environmental issues and presenting detailed information to the NZ Government in support of campaigns. The good thing is your subscription money is being used positively regardless of how much or how little active time you yourself can dedicate.

8) Armchair petitioning. Even for people unable to get out and about you can also petition your local politicians and other relevant figures without leaving home. A good example in recent years has been British chef Hugh Fearnley-Whittingstall's fish discards campaign, which gained massive public support and succeeded in less than three years in not only gaining an update to European Union by-catch legislation, but had positive knock-on effects in other aspects of commercial fishing within the EU. Nice one, Hugh!

9) Citizen science. A fairly recent definition, this encapsulates an enormous range of passive and active methods. The former includes crunching science project data whilst your home computer is idling, whilst a painless example of the latter would be participating in wildlife surveys; recent New Zealand examples include one-off garden bird and butterfly counts, through to monthly assessments of a single square metre of rocky beach. There are numerous projects that are suitable for children to participate in, so a side-effect is to encourage children to accept science as an integral component of their lives, not just something to do at school.

10) Education. Talking of school...saving the most difficult to last. I was recently accosted on the street by an admittedly junior employee of a petroleum giant whose argument - if I can dignify it as such - was that snowfall in New Zealand in October was clear proof global warming isn't occurring. Clearly, there is a severe lack of public understanding of basic science, this particular case relating to the fact that climate change can include local cooling at the same time as warming on a global scale. Thanks to the ubiquity of information channels from climate change-denier News Corp (now the proud owner of National Geographic, for crying out loud), it seems certain that grass-roots environmental education needs to be the way forward, considering how much misinformation and nonsense is being spread by global news networks. So don't be afraid to talk - spread the word!

I'd like to end on two quotes: the first is by American cartoonist and author James Thurber, who said: "Let us not look back in anger, nor forward in fear, but around in awareness." The second comes from a decorative plate that hangs on my wall: "Other planets cannot be as beautiful as this one." Let us hope we can leave a legacy such that our descendants continue to think so.

Thursday, 26 March 2015

A roaring success? The Walking with Dinosaurs Arena Spectacular

Surely these days everyone loves dinosaurs? After all, the original Jurassic Park movie made over a billion US dollars worldwide, enough to generate a plethora of merchandise and three sequels. In a less fictional vein, the BBC's television series' Walking with Dinosaurs broke viewing records - perhaps just as well, considering its equally record-breaking budget - and led to several TV spin-offs, including a 3D feature film aimed at very young children.

But it's rare for a television documentary (or should that be docudrama?) series to spawn a live show, which is exactly what happened in 2007. Walking with Dinosaurs: The Arena Spectacular has to date has been seen by a worldwide audience of over eight million. Again, this probably all to the good, considering the enormous expense involved in the production. So having seen the television series on DVD, my daughters were desperate to go to the live show here in Auckland. Due to the expense of the tickets I hummed and hawed but eventually bowed under pressure. This was nothing to do with my own interest in seeing the event, of course!

So was it worth it? The ninety minute show followed the chronological order of the series, from late Triassic to the Cretaceous-Tertiary boundary. My first impression wasn't particularly good, as the narrator Huxley (incidentally I'm not sure what Thomas Henry Huxley would make of the enterprise, considering he was even against opening the Natural History Museum to the general public) explained about dinosaur footprints whilst lights projected some very oversized examples of the same. I assume the scale was to allow visibility from the furthest rows, but even so it seemed a bit clumsy. In my book, there's a fine line between artistic licence and poor science communication.

However, things improved with the arrival of the first beasts. Although it looked as if it was immediately heading in a Disneyesque direction when several cute herbivorous Plateosaurus hatched from a nest of eggs, this was quickly quelled when one hatchling was gobbled up by a Liliensternus. It was excellent to see Nature in warts and all mode - or should that be a literal 'red in tooth and claw' - considering that the audience largely consisted of pre-teen children and their parents? Talking of which, in some cases the roaring monsters and dramatic lighting proved too much, with a girl sitting near me spending more time cradled under her father's armpit rather than looking at the show. I was in general surprised by the lack of anthropomorphising elements that the 3D movie was criticised for, a brave move considering the target audience. Perhaps the major concession to the junior spectators was the young T. rex, whose weak attempts at imitating its far more powerful parent induced laughter from the audience.

In addition to describing the behaviour of the dinosaurs – and one pterosaur (a decent-enough marionette hung in front of poorly projected background footage, although my younger daughter initially thought it was a giant bat) Huxley also covered plate tectonics and the development of vegetation. At one point he even stuck his hand into a steaming pile of fresh herbivore poop to retrieve a dung beetle, leading to an explanation of food chains past and present. Both the inflatable growing ferns and a forest fire were particularly well done, as well as some simple yet charming butterflies made of what looked like coloured paper blown around by hidden fans. My children agreed that the only thing they didn't like were the skate platforms required to move the larger dinosaurs, although I found these less distracting than the marginally camouflaged operator legs in the smaller species. Interestingly, neither of my daughters asked how the larger species were controlled. I guess they've grown up in an age of electronic wonders and this was seen to be just another example of impressive technology.

Walking with Dinosaurs: The Arena Spectacular

So what about the educational element of the show? Edutainment can be a difficult balance as well as an appalling word. In addition to the lavish praise that it deserved, the original television series was criticised for presenting speculation as fact. In particular, the large size of some of the species has been questioned. However, the arena event did acknowledge some of the developments since the series was first broadcast fifteen years ago, such as by adding feathers (or proto-feathers) to the mother Tyrannosaurus and even more so to her juvenile.

Judging by the appreciative audience, many of the younger crowd members were already familiar with a wide range of dinolore. For example, as each animal starting entering the arena I could hear children as young as four or five shouting some of the names - and correctly. This created a pleasing contrast to many of the adult visitors to London's Natural History Museum, whom I recall not only failed to differentiate a sauropod from a T. rex but assumed that every large skeleton they saw must be a dinosaur (for example, the giant sloth Megatherium in the Fossil Marine Reptiles gallery).

But just how much of an interest in the giant beasts of the Mesozoic is likely to lead to a more detailed understanding of the wider world of palaeontology as the audience members grow older? Unfortunately, at times it was difficult to hear the narrator's details due to a combination of the sound effects and intense music, which whilst emotive and dramatic, had a tendency to drown out Huxley's description of the antediluvian scenes. Combined with the palpable excitement that most of the younger audience members were clearly experiencing, it's dubious just how much anyone learned during the show. The associated website does contain some educational material, although it makes such basic mistakes as listing the pterosaur Ornithocheirus in the list of dinosaurs.

You could suggest that dinosaurs have become just another part of the great consumerist machine, with any associated science a lucky by-product of flogging stuff. After all, dinosaur-related merchandise features highly in the range at many museum gift shops, even those with a marginal connection to the fauna, as discussed unfavourably several decades ago by evolutionary palaeontologist Stephen Jay Gould. It could be argued that any attempt to introduce science-based knowledge to the general public is a good idea, but with the quality of special effects in this live-action show as well as in film and television it may be difficult for children brought up on this material to separate fact from fiction. It is undoubtedly an exciting time for dinosaur discoveries, but science is more than just a series of facts: without the rigour and understanding, the material is subject to the same whims of fashion as the rest of popular culture. If science is to be promoted as the most objective methodology our species has for understanding such fascinating subjects as ancient mega fauna, we need to ensure that audiences are given enough of the reasoning besides all the roaring.

Saturday, 15 March 2014

Cutting remarks: investigating five famous science quotations

If hearing famous movie lines being misquoted seems annoying, then misquoted or misused science citations can be exasperating, silly or downright dangerous. To this end, I thought that I would examine five well-known science quotations to find the truth behind the soundbite. By delineating the accurate (as far as I'm aware) words in the wider context in which they were said/written down/overheard by someone down the hallway, I may be able to understand the intended meaning, and not the autopilot definition frequently used. Here goes:

1) God does not play dice (Albert Einstein)

Possibly Einstein's most famous line, it sound like the sort of glib comment that could be used by religious fundamentalists to denigrate science in two opposing fashions: either Einstein is being facetious and therefore sacrilegious; or he supports an old-fashioned version of conventional Judeo-Christian beliefs in which God can be perceived in the everyday world. Talk about having your cake and eating it!

Einstein is actually supposed to have said: "It is hard to sneak a look at God's cards. But that he would choose to play dice with the world...is something that I cannot believe for a single moment." This gives us much more material to work with: it was actually a quote Einstein himself supplied to a biographer. Some years earlier he had communicated with physicist Max Born along similar lines: "Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one'. I, at any rate, am convinced that He does not throw dice."

So here is the context behind the quote: Einstein's well-known disbelief in the fundamental nature of quantum mechanics. As I've discussed in a previous post Einstein's opinions on the most accurate scientific theory ever devised was completely out of step with the majority of his contemporaries - and physicists ever since. Of course we haven't yet got to the bottom of it; speaking as a non-scientist I find the Copenhagen Interpretation nonsense. But then, many physicists have said something along the lines of that if you think you understand quantum mechanics, you haven't understood it. Perhaps at heart, Einstein was stuck in a Nineteenth Century mind set, unable to conceive of fundamental limits to our knowledge or that probability lies at the heart of reality. He spent decades looking for a deeper, more obviously comfortable, cause behind quantum mechanics. And as for his interest in the 'Old One', Einstein frequently denied his belief in a Judeo-Christian deity but referred to himself as an agnostic: the existence of any presence worthy of the name 'God' being "the most difficult in the world". Now there's a quote worth repeating!

2) Science is a way of thinking much more than it is a body of knowledge (Carl Sagan)

As I've mentioned before, Bill Bryson's A Short History of Nearly Everything is chock full of the results of scientific investigation but rarely stops to consider the unique aspects that drive the scientific method, or even define the limits of that methodology. Sagan's full quote is: "Science is more than a body of knowledge. It is a way of thinking; a way of sceptically interrogating the universe with a fine understanding of human fallibility. If we are not able to ask sceptical questions, to interrogate those who tell us that something is true, to be sceptical of those in authority, then, we are up for grabs for the next charlatan (political or religious) who comes rambling along."

It is interesting because it states some obvious aspects of science that are rarely discussed, such as the subjective rather than objective nature of science. As human beings, scientists bring emotions, selective memory and personal preferences into their work. In addition, the socio-cultural baggage we carry is hardly ever discussed until a paradigm shift (or just plain, old-fashioned time has passed) and we recognise the idiosyncrasies and prejudices embedded into research. Despite being subject to our frailties and the zeitgeist, once recognised, these limitations are part of the strength of the discipline: it allows us, at least eventually, to discover their effect on what was once considered the most dispassionate branch of learning.

Sagan's repeated use of the word sceptical is also of great significance. Behind the multitude of experimental, analytical and mathematical methods in the scientific toolkit, scepticism should be the universal constant. As well as aiding the recognition of the biases mentioned above, the sceptical approach allows parsimony to take precedence over authority. It may seem a touch idealistic, especially for graduate students having to kowtow to senior faculty when seeking research positions, but open-minded young turks are vital in overcoming the conservative old guard. Einstein's contempt for authority is well-known, as he made clear by delineating unthinking respect for it as the greatest enemy of truth. I haven't read Stephen Jay Gould's Rocks of Ages: Science and Religion in the Fullness of Life, but from what I understand of his ideas, the distinction concerning authority marks a clear boundary worthy of his Non-Overlapping Magisteria.

3) The mystery of the beginning of all things is insoluble by us; and I for one must be content to remain an agnostic (Charles Darwin)

From the original publication of On the Origin of Species in 1859 to the present day, one of the most prominent attacks by devoutly religious critics to natural selection is the improbability of how life started without divine intervention. If we eventually find microbial life on Mars - or larger organisms on Titan, Europa or Enceladus - this may turn the tide against such easy a target, but one thing is for certain: Darwin did not attempt to detail the origin of life itself. Although he stated in a letter to a fellow scientist: "But if (and Oh! What a big if!) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, lights, heat, electricity etc., present that a protein compound was chemically formed ready to undergo still more complex changes" there are no such broad assumptions in his public writings.

As it turns out, Darwin may have got some of the details correct, although the 'warm little pond' is more likely to have been a deep sea volcanic vent. But we are still far from understanding the process by which inert chemicals started to make copies of themselves. It's been more than sixty years since Harold Urey and Stanley Miller at the University of Chicago produced amino acids simply by recreating what conditions were then thought to resemble on the early Earth. Despite numerous variations on this classic experiment in subsequent decades, we are little closer to comprehending the origin of life. So it was appropriate that Darwin, who was not known for flights of fancy (he once quipped "My mind seems to have become a kind of machine for grinding general laws out of large collections of facts") kept speculation out of his strictly evidence-based publications.

Just as Darwin has been (at times, deliberately) misquoted by religious fundamentalists determined to undermine modern biology, his most vociferous disciple today, Richard Dawkins, has also been selectively quoted to weaken the scientific arguments. For example, printing just "The essence of life is statistical improbability on a colossal scale" as opposed to the full text from The Blind Watchmaker discussing cumulative natural selection, is a cheap literary device that lessens the critique, but only if the reader is astute enough to investigate the original source material.

4) Anybody who has been seriously engaged in scientific work of any kind realizes that over the entrance to the gates of the temple of science are written the words: 'Ye must have faith.' (Max Planck)

Thomas Henry Huxley (A.K.A. Darwin's Bulldog) once wrote that "Science is organized common sense where many a beautiful theory was killed by an ugly fact." But that was back in the Nineteenth Century, when classical physics ruled and scientists predicted a time in the near future when they would understand all the fundamentals of the universe. In these post-modern, quantum mechanical times, uncertainty (or rather, Uncertainty) is key, and common sense goes out of the window with the likes of entanglement, etc.

Back to Planck. It seems fairly obvious that his quote tallies closely with the physics of the past century, in which highly defined speculation and advanced mathematics join forces to develop hypotheses into theories long before hard evidence can be gleaned from the experimental method. Some of the key players in quantum physics have even furthered Copernicus' preference for beautiful mathematics over observation and experiment. Consider the one-time Lucasian Professor of Mathematics Paul Dirac's partiality for the beauty of equations over experimental results, even though he considered humanity's progress in maths to be 'feeble'. The strangeness of the sub-atomic world could be seen as a vindication of these views; another of Planck's quotes is "One must be careful, when using the word, real."

Leaving aside advanced physics, there are examples in the other scientific disciplines that confirm Planck's view. In the historical sciences, you can never know the full story. For example, fossils can provide some idea of the how and when a species diverged into two daughter species, but not necessarily the where and why (vis-à-vis ecological 'islands' in the wider sense). Not that this lack of precision should be taken as doubt of validity. As evolutionary biologist Stephen Jay Gould once said, a scientific fact is something "confirmed to such a degree that it would be perverse to withhold provisional assent."  So what might appear to primarily apply to one segment of the scientific endeavour can be applied across all of science.

5) Space travel is utter bilge (Richard van der Riet Woolley, Astronomer Royal)

In 1956 the then-Astronomer Royal made a prediction that was thoroughly disproved five years later with Yuri Gagarin's historic Vostock One flight. The quote has been used ever since as an example of how blind obedience to authority is unwise. But Woolley's complete quote was considerably more ambiguous: "It's utter bilge. I don't think anybody will ever put up enough money to do such a thing...What good would it do us? If we spent the same amount of money on preparing first-class astronomical equipment we would learn much more about the universe...It is all rather rot." He went on say: "It would cost as much as a major war just to put a man on the moon." In fact, the latter appears to be quite accurate, and despite the nostalgia now aimed at the Apollo era, the lack of any follow-up only reinforces the notion that the race to the moon was simply the ultimate example of Cold War competition. After all, only one trained geologist ever got there!

However, I'm not trying to defend the edited version of Woolley's inopportune statement since he appears to have been an armchair naysayer for several decades prior to his most famous quote. Back in 1936, his review of Rockets Through Space: The Dawn of Interplanetary Travel by the first president of the British Interplanetary Society (BIS) was even more pessimistic: "The whole procedure [of shooting rockets into space]...presents difficulties of so fundamental a nature, that we are forced to dismiss the notion as essentially impracticable, in spite of the author's insistent appeal to put aside prejudice and to recollect the supposed impossibility of heavier-than-air flight before it was actually accomplished." Again, it might appear in hindsight that Woolley deserves scorn, were it not for the fact that nearly everyone with some knowledge of space and aeronautics was of a similar opinion, and the opposition were a few 'cranks' and the like, such as BIS members.

The moral of the this story is that it is far from difficult to take a partial quote, or a statement out of context, and alter a sensible, realistic attitude (for its time and place) into an easy piece of fun. A recent tweet I saw was a plaintive request to read what Richard Dawkins actually says, rather than what his opponents claim he has says. In a worst-case scenario, quote-mining makes it possible to imply the very opposite of an author's intentions. Science may not be one hundred percent provable, but it's by the far the best approach we have to finding out that wonderful thing we humans call 'the truth'.

Monday, 27 January 2014

An index of possibilities: defining science at a personal level

"If a little knowledge is dangerous, where is the man who has so much as to be out of danger?" - T.H. Huxley

With a sense of revitalisation following the start of a new year - and since the number of misconceived notions of the scientific method are legion - I thought I should put my cards on the table and delineate my personal ideas of what I believe science to be.

I suppose you could say it's a self-learning exercise as much as anything. Most people consider science the least comprehensible of all disciplines, removed from every day experience and only accessible by a select few (a.k.a. an intellectual elite), albeit at the loss of the creativity that drives so many other aspects of our lives. But hopefully the incredible popularity of British physicist Brian Cox and other photogenic scientist-cum-science-communicators is more than a passing fad and will help in the long term to break down this damaging myth. Science is both part and parcel of our existence and will only increase in importance as we try to resolve such vital issues as environmental degradation whilst still providing enough food and water for an ever-increasing population (fingers very much crossed on that one, folks!)

So here goes: my interpretation of the scientific method in ten bite-size, easy-to-swallow, chunks.
  1. A large amount of science is not difficult to comprehend
    Granted, theoretical high-energy physics is one of several areas of science difficult to describe meaningfully in a few, short sound bites. But amidst the more obtuse volumes aimed at a popular readership there are some gems that break down the concepts to a level that retains the essential details without resorting to advanced mathematics. Evolutionary biologist Stephen Jay Gould noted that the fear of incompetence put many intelligent enthusiasts off learning science as a leisure activity, but with the enormity of these popular science sections in many bookstores - there are over 840,000 books in Amazon.com's science section - there is no longer an excuse for not dipping a toe. Leaving physics aside, there are plenty of areas of science that are easy to understand too, especially in the 'historical' disciplines such as palaeontology (more on that later).
  2. Science is not a collection of facts but a way of exploring reality
    This is still one of the most difficult things to convey. Bill Bryson's prize-winning best seller A Short History of Nearly Everything reminds me of the genre of boy's own bumper book of true facts that was still around when I was a child: Victorian-style progress with a capital 'P' and science just a compilation of theories and facts akin to say, history. The reality is of course rather more complicated. The scientific method is a way of examining nature via testable questions that can be resolved to a high degree of certainty by simplified models, either by practical experiments (both repeatable and under 'laboratory conditions') - and including these days, computer simulations - or via mathematics.
  3. Science requires creativity, not just rigor
    The stereotype of scientists as rational, unemotional beings has been broken down over the past thirty years or so, but many non-scientists still have little idea of the creative thinking that can be involved in science, particularly in cutting-edge theorising. From Einstein's thought experiments such as what it would be like to ride alongside a beam of light to the development of string theory - which has little likelihood of experimental evidence in the near future - scientists need to utilise creative thought at least as much as data collation and hard mathematics.
  4. Scientists are only human
    Scientists are far from immune to conditioned paths of thought ingrained via their social and cultural background. Therefore, rather than all scientists being equally adept at developing particular hypotheses, they are subject to the same whims and sense of normality as everyone else. In addition, individual idiosyncrasies can hinder their career. I've discussed previously how Einstein (who famously said his contempt of authority was punished by him becoming an authority himself) refused to accept some of the aspects of quantum theory long after his contemporaries had.
    Scientists could be said then to follow the stereotype visible elsewhere, namely that young radicals frequently evolve into old conservatives.
  5. If there's no proof, is it still science?
    Thomas Henry Huxley (a.k.a. Darwin's Bulldog) once said that the 'deepest sin against the human mind is to believe things without evidence'. Yet scientific hypotheses are sometimes formed prior to any support from nature or real-world experimentation. Although Charles Darwin had plenty of the evidence revealing artificial selection when he wrote On the Origin of Species, the fossil record at the time was extremely patchy and he had no knowledge of Mendelian inheritance. In addition, the most prominent physicists of his day were unaware of nuclear fusion and so their theories of how stars shone implied a solar system far too young for natural selection to be the primary mechanism of evolution. By sticking to his ideas in spite of these issues, did this make Darwin a poor scientist? Or is it feasible that many key advances require a leap of faith - a term unlikely to please Richard Dawkins - due to lack of solid, physical evidence?
  6. Are there two schools of science?
    New Zealand physicist Ernest Rutherford once disparagingly remarked something along the lines of physics being the only real science, and that other so-called scientific disciplines are just stamp collecting. I prefer to think of science as being composed of historical and non-historical disciplines, only occasionally overlapping. For instance, cutting-edge technological application of physics required repeatable and falsifiable experiments, hence the deemed failure of cold fusion, whilst the likes of meteorology, evolutionary biology, and palaeontology are composed of innumerable historical events and/or subject to the complexities of chaos theory and as such are unlikely to provide duplicate circumstances for testing or even capable of being broken down into simplified models that can be accurately tested.
  7. An accepted theory is not necessarily final
    A theory doesn't have to be the absolute end of a quest. For example, Newton's law of universal gravitation had to wait over two centuries for Einstein's general theory of relativity to explain the mechanism behind the phenomenon. Although quantum mechanics is the most accurate theory ever developed (in terms of the match between theory and experimental results), the root cause is yet to be understood, with wildly varying interpretations offered instead. The obvious problem with this approach is that a hypothesis may fit the facts but without an explanatory mechanism, scientists may reject it as untenable. A well-known instance of this scientific conservatism (albeit for good reasons) involved Alfred Wegener's hypothesis of continental drift, which only achieved orthodoxy decades later once plate tectonics was discovered.
  8. Scientific advance rarely proceeds by eureka moments
    Science is a collaborative effort. Few scientists work in a vacuum (except astronauts, of course!) Even the greatest of 'solo' theories such as universal gravitation was on the cards during Newton's lifetime, with contemporaries such as Edmond Halley working along similar lines. Unfortunately, our predilection for simple stories with identifiable heroes means that team leaders and thesis supervisors often receive the credit when many researchers have worked towards a goal. In addition, the priority rule is based on first publication, not when a scientist formulated the idea. Therefore many theories are named after scientists who may not have been the earliest discoverer or formulator. The work of unsung researchers is frequently neglected in favour of this simplified approach that glorifies the work of one pioneer at the expense of many others.
  9. Science is restricted by the necessity of using language to describe it
    Richard Dawkins has often railed against Plato's idealism (a.k.a. Essentialism), using the phrase 'the tyranny of the discontinuous mind'. I recall a primary example of this as a child, whilst contemplating a plastic model kit I had of a Neanderthal. I wondered how the human race had evolved: specifically, how could parents of a predecessor hominid species give birth to a modern human, i.e. a child of a different species? Of course, such discontinuity is nonsense, but it is surprising how frequently our mind interprets the world in this format of neat boundaries. A large part of the problem is how do we define transitional states as the norm, since our language is bound up with intrinsic categories? In addition, we rely on metaphor and analogy to describe aspects of the universe that do not conform to everyday experience, the nature of quantum probability being an obvious example. As with the previous point on our innate need for heroes, we are always constructing narratives, thus restricting our ability to understand nature at a fundamental level.
  10. Science does not include a moral dimension
    Science, like nature, is neither moral nor immoral and cannot provide a framework for human behaviour. Of course, this doesn't prevent scientists from being greedy or stupid, or even just naïve: witness British evolutionary biologist J.B.S. Haldane who recommended the use of poison gas as a war weapon due to it being more humane than conventional weapons (in terms of the ratio of deaths to temporarily incapacitation). This suggests that non-scientists should be involved in the decision-making process for the funding of some science projects, especially those with clear applications in mind. But in order for this to be tenable, the public needs to be considerably more scientifically literate than at present. Otherwise the appalling scare-mongering engendered by the likes of the British tabloid press - think genetically modified crops labelled as 'Frankenstein foods' - will only make matters far worse. GM crops themselves are a perfect example of why the Hollywood approach for clear-cut heroes and villains fails with most of science. Reality is rarely black or white but requires careful analysis of the myriad shades of grey.
In conclusion, it might be said that there are as many variants of science as there are human beings. Contrary to many other disciplines, mistakes and ignorance are clear strengths: as Darwin stated in The Descent of Man, 'Ignorance more frequently begets confidence than does knowledge.' Above all, there are aspects of science that are part and parcel of our everyday experience and as such, we shouldn't just consider it as something to save for special occasions.

Saturday, 20 March 2010

Come all ye faithful: do faith schools threaten British science education?

With the announcement of a New Life Academy in Hull opening later this year the debate over religious education in Britain has become more intense than ever before. Of course we need to take Richard Dawkins' rhetoric with a pinch of salt, but has the current administration allowed or even provided financial support for fundamentalist organisations to infiltrate the British education system at the expense of science and rational thought?

The Hull Academy will follow the Accelerated Christian Education curriculum that amongst other tenets supports the literal truth of the Bible. So how likely is it that the UK will take on aspects of the American Bible Belt, with critical thinking and enquiry subservient to dogma and absolute belief? One of the main criticisms of the ACE system is its reliance on learning by rote, yet at least in their pre-teens, children are shown to benefit from such a system. It appears to do little to quench their thirst for exploration and discovery, which if anything is largely stamped out by an exam-obsessed education system. If all learning is given via rote there is an obvious problem, but in the vast majority of British faith schools this does not seem to be the case.

Alongside the four Emmanuel Schools Foundation academies, the NLA Academy is an easy target for those fearing religious extremism. But outside of Hollywood, the real world is rarely so easy to divide into good and bad. Not only are the ESF schools open to all faiths but an Ofsted inspection failed to support the allegations of creation science being taught. Even if these faculties were heading towards US-style fundamentalism, linking their techniques to all faith schools would be akin to arguing that the majority of British Jewish children attend the Yiddish-speaking private schools in North London's Stamford Hill orthodox community. Parents who are desperate to indoctrinate their children will take a do-it-yourself approach if they cannot find a school to deliver their requirements.

Many senior religious figures of various faiths, including the Archbishop of Canterbury Dr Rowan Williams, have stated that they do not want creationism taught in schools. If there is any stereotyping in this subject, it is here: most fundamentalists concentrate solely on evolutionary theories, natural selection and its implicit linking of mankind to other animals, rather than any other branch of science. Although the age of the Earth (and therefore the universe in general), as well as the sun-centred solar system, is sometimes denied for its disagreement with the Bible and the Koran, there are few extremists prepared to oppose other cornerstones of modern science. Clearly, would-be chemists should feel safe, potential geo- and astrophysicists less so, and those considering a career in evolutionary biology should not move to the American Midwest (or even Hull!)

More seriously, what of more subtle approaches by the mainstream denominations? A 2004 New Statesman article maligned an Anglican school in Canterbury for its attempts to inculcate infants with religious sensibilities via techniques that sounded more like a New Age cult than the Jesuit approach, but since then there has been little in the way of comparable stories. Whether senior figures in the Church of England see faith schools as a way of replenishing their ever-diminishing flock is unknown, but there is no solid evidence for such a master plan. Britain has a long and let's face it, fairly proud history of ordained ministers who have dabbled in the sciences, although few who could be compared with the Augustinian monk Gregor Mendel, the father of modern genetics. Although T.H.Huxley (A.K.A. Darwin's bulldog) railed against the ordained amateurs, his main bone of contention concerned Anglican privilege: comfortable sinecures allowing vicars to delve in the sciences whilst the lower social orders including Huxley had to fight tooth and claw to establish a paid profession.

There are many examples of religiously devout scientists who can be used to diffuse the caricatured 'us and them' mentality, perhaps the best-known current British example being particle physicist the Reverend John Polkinghorne. Organisations such as the International Society for Science and Religion, and the Society of Ordained Scientists, both of which claim Polkinghorne as a member, are against intelligent design from both a faith and science perspective. Whilst the hardline atheists might deem these groups as intending to both have their wafer and eat it, there are clearly a wide range of attitudes in support of current scientific theories at the expense of a literal belief in religious texts. But then don't most Christians today express a level of belief as varied as the rituals of the numerous denominations themselves, often far short of accepting literal Biblical truth? Believers find their own way, and so it is with scientists who follow conventional belief systems.

However, one potential danger of teaching science in faith schools may be a relic of Darwin's contemporaries (and of course Darwin himself initially aimed for a church career), namely the well-intentioned attempt to imbibe the discipline with a moral structure. Yet as our current level of knowledge clearly shows, bearing in mind everything from natural selection to asteroid impact, we cannot ally ethical principles to scientific methods or knowledge. Scientific theories can be used for good or evil, but it is about as tenable to link science to ethics or moral development as it is to blame a cat for torturing its prey. Of course children require moral guidance, but it must be nurtured via other routes. Einstein wrote in 1930 of a sense of cosmic religious feeling which has no need for the conventional anthropomorphic deity but to my mind seems more akin to Buddhism. As such he believed that a key role of science (along with art) is to awaken and preserve this numinous-like feeling. I for one consider this is as far as science can go along the road to spirituality, but equally agree with Huxley's term agnosticism: to go beyond this in either direction with our current, obviously primitive state of understanding, is sheer arrogance. If we wish to inculcate an open mind in our children, we must first guarantee such a thought system in ourselves. All else is indoctrination, be it religious or secular.

One of the ironies of faith schools in a nation where two thirds of secondary school children do not see themselves as religious practitioners, is that they are generally considered to supply a high standard of education and as such are usually oversubscribed. But all in all, there is little evidence to support this notion, since any oversubscribed institution is presumably able to choose a higher calibre of student whilst claiming to the contrary. Current estimates suggest 15% of British children attend faith schools, with a higher proportion in some regions (such as over 20% of London's secondary school places) but as low as 5% in more rural areas. Clearly, parents who want a good education for their children are not being put off by the worry of potential indoctrination. As has become obvious over the past few years, there are large increases in attendance at school-affiliated churches just prior to the application period: a substantial number of parents are obviously faking faith in return for what they deem to be a superior education.

For the moment it seems science education in Britain has little to worry about from the fundamentalists, at least compared to the divisiveness and homophobia that the National Secular Society deem the most prominent results of increasing faith-based education. We must be careful to ensure that as taxpayers we do not end up funding creationist institutions, but we can do little to prevent private schools following this approach. On a positive note, the closest faith school to me has a higher level of science attainment than its non-religious rivals. I admit that I attended an Anglican school for three years and appear to have emerged with as plural a stance as could be wished for. Indeed, I look back fondly on the days of dangerous chemistry experiments before health and safety-guaranteed virtual demonstrations began to supplant this fun aspect of school science: if you haven't used a burning peanut to blow the lid off a cocoa tin, you haven't lived!

Technorati Tags: , , ,

Sunday, 17 January 2010

Shall I compare thee to a charming quark? When mitochondria meets metaphor

Many years ago whilst holidaying in Cyprus I experienced an event commonplace to our ancestors but increasingly rare to us light-polluted urbanites today. Sitting outside one evening a spectacular glow appeared over a nearby hill, slowly gaining a floodlight intensity until the full moon rose, casting shadows and obscuring the Milky Way. Small wonder previous centuries have written so much about the beauty of the "starry realm"; but can poetry survive when having discovered the secrets of the stars, we have ironically lost touch with them as a sensory experience? As the late Richard Feynman asked, "do I see less or more?" His answer, proving him a worthy successor to Emily Dickinson and Robert Frost, encapsulates the view that knowledge gained need not lessen the wonder: "stuck on this carousel my little eye can catch one million year old light..."

But then the night sky (and the natural world in general) is an easy poetic target compared to other aspects of science. Yet historical examples of British scientist-poets abound, from Charles Darwin's grandfather Erasmus, whose verse included copious footnotes explaining the ideas within, to chemist Humphry Davy, physicist James Clerk Maxwell, and more recently biologist Julian Huxley. You might ask who are today's equivalents - who writes paeans to Messenger RNA or odes to nuclear fusion? There are poets who exchanged science for versifying (David Morley) and scientists who edit poetry (Jocelyn Bell Burnell), but few who simultaneously practice both sides of C.P. Snow's infamous The Two Cultures. Apart from several astronomy compilations (featuring verse largely by non-astronomers) there are hardly any recent science-orientated volumes aimed at adults except for James Muirden's The Cosmic Verses: A Rhyming History of the Universe. Informative as it is, Muirden's charming couplets hardly push the boundaries of poetry or science exposition.

One obvious (and therefore not necessarily correct) reason for the lack of contemporary science poetry is that the complexity of modern theories and terminology create a prohibitive first hurdle: the likes of phagocytosis and inhomogeneous magnetic fields hardly trip off the tongue. However, ecologist and 'lapsed physicist' Mario Petrucci, a rare example of a contemporary scientist with an actively-employed poetic gift, argues that science-inspired poetry shouldn't rely on technological name-dropping but look at the defining methodologies. He provides an exquisite example via a (prose) description of the physiological response to listening to verse, which he defines as the "subliminal scent of aroused communication".

Then again, modes of writing have changed dramatically over the past century, with the florid, highfalutin prose of the Victorians replaced by a detached, matter-of-fact style developed to avoid ambiguity. Thomas Henry Huxley (Julian's grandfather) was, like many of his contemporaries, capable of prose that to the modern ear is to all intents and purposes poetry: "...intellectually we stand on an islet in the midst of an illimitable ocean of inexplicability. Our business in every generation is to reclaim a little more land..." In contrast, today's technical papers achieve universal comprehension by austerity of language. This is of course the complete antithesis of poetry, wherein each reader brings their own personal history to enhance imagery and meaning.

At a practical level, does the constant 21st century babble of communications and background noise (not just aural) deprive would-be poets of time to reflect? This implies a somewhat rose-tinted view of earlier times, even though the virtual disappearance of a Classics-based education system has certainly divested us of the safety net of enduring metaphors. In addition, as scientists becoming ever-more specialist in narrower fields (not to mention polymathism seemingly frowned upon), is there a fear from practitioners and publishers alike that the profession has little worth versifying? Even the romantic image of the stargazer spending their nights in a chilly dome has seemingly been replaced by observation via computer screen.

Despite there probably being more books arguing the relationship between arts and sciences than there are volumes of science-themed poetry (from Mary Midgley versus Richard Dawkins to Stephen Jay Gould's attack on E.O. Wilson's definition of consilience), there is plenty for scientist-poets, or just writers with scientific knowledge, to write about. The late 19th century arrogance that the quest for knowledge was nearing its end has been superceded by the view that there may even not be any final answers to life, the universe, and everything. Far from being a list of dry facts and equations, the methods of science demand creativity to achieve paradigm shifts, as anyone with an understanding of Einstein's thought experiments knows. Other natural philosophers have achieved major breakthroughs via aesthetic considerations, such as harmonic proportions for Johannes Kepler, symmetry for Clerk Maxwell and patterns and linguistic analogies for Mendeleyev. As theoretical physicist Lee Smolin has stated, his discipline is based around an aesthetic mode of working, fashioning constructs that capture some essence of understanding about reality. Are theories such as loop quantum gravity that different from poetic metaphors? After all, even the subatomic particle we call a quark was named after the sound of ducks, and then later linked to the rhyme in Finnegans Wake.

But then there is the difficulty of finding a universal definition for poetry anyway. The title of Michael Guillen's Five Equations that Changed the World: The Power and Poetry of Mathematics suggests an aesthetic form on par with verse. If we can accept a wider meaning then perhaps there is a solution as to where science poetry is still to be found: hidden in the mellifluous prose of popularisers. The poetic style of Carl Sagan and his successors can clearly be traced to Loren Eiseley, thence to the pre-war British polymath James Jeans, who in turn was not so far removed from T.H. Huxley at his most rhapsodical. In addition to his writing, Sagan was also capable of poetic gestures that clearly represent our multi-media age's continuation of Erasmus Darwin's verses. When Voyager 1 had passed the orbits of Neptune and Pluto, Sagan persuaded NASA to turn the probe's cameras back towards the sun and make a family portrait of the Solar System, including our very own pale blue dot. Surely this is a superlative example of the amalgamation of science and poetry? And as to the future, the English author Eden Phillpotts once wrote: "The universe is full of magical things, patiently waiting for our wits to grow sharper."

Technorati Tags: , ,

Sunday, 6 December 2009

Hawking and Dawkins: the dynamic duo

There was a time not so long ago when the defining attributes of famous British scientists were little more than a white coat, wild hair, and possibly a monocle. Today, it seems the five-second sound bite mentality of the MTV generation requires any scientist who can top a man-in-the-street poll to have some atypical personality traits, to say the least. So are the current British science superstars good role models in the way they represent science to the public, or having achieved fame are they content to ride the media gravy train, with science taking a backseat (in the last carriage, if you want to continue the metaphor)?

If today's celebrities are frequently reduced to mere caricatures of their former selves (supposing they had anything more in the first place), how can the complex subtleties of modern science survive the media simplification process? If there is one thing that defines our current state of scientific understanding, it is surely that the universe is very subtle indeed. A recent episode of The Armstrong and Miller Show highlighted this beautifully via a sketch of Ben Miller (who in real life swapped a physics PhD for luvviedom) as a professor being interviewed about his latest theory. Each time he was asked if it was possible to provide a brief description of his theory in layman's terms, he succinctly replied, "no".

Arguably the two biggest names today, at least in Britain, are Stephen Hawking and Richard Dawkins. After appearances on everything from Star Trek to The Simpsons, Hawking has overtaken Einstein as the scientific genius everyone has heard of. But, like Einstein's last few decades, has Hawking reached the height of fame long after completing his best work, a genius revered without comprehension by a public unaware of the latest developments in astrophysics? If it's true that theoretical physicists' main period of productivity is usually in their twenties, Hawking wouldn't be any different from other physicists his age (remembering he retired from the Lucasian Chair several months ago).

Hawking himself implies that his fame is compounded of demand from a lazy and scientifically non-savvy media (as in "who's the current Einstein?") twinned with the tedious if understandable interest surrounding his condition. It's probably fair to say that a physically-fit Professor Hawking wouldn't be considered to provide nearly as interesting copy. Of course to be able to write the best-selling (nine-million copies!) A Brief History of Time was a fantastic achievement, not least for its brevity. If it (and Hawking's later ventures) succeed in promoting scientific knowledge and methodologies then all well and good but it's not difficult to get the feeling that he is primarily viewed as a brand name. Very little of the blame can be passed to Hawking himself, but the question that must be asked is does the interest in him divert the limited media attention span for science away from a younger generation of scientists?

Richard Dawkins on the other hand seems to have deliberately cultivated media attention, no doubt revelling in his description as Darwin's Rottweiler. As holder of the Charles Simonyi Professorship until late last year he had an official position from which to promote public understanding, but for me his single-minded crusade has become rather tiresome. His role model, Thomas Henry Huxley, promoted science as "nothing but trained and organized common sense" whilst in addition espousing, via his "trade mark" agnosticism, the notion that one should not believe or disbelieve a proposition without justifiable evidence. Surely Huxley's agnosticism and the ideal of the scientific method are indistinguishable?

In contrast, Dawkins' approach is to browbeat all opposition, religious, scientific, or otherwise, with techniques that ironically having rather more in common with "faith viruses" than science. His documentary The Root of All Evil? allegedly omitted interviews with religious moderates to concentrate on the oddballs. It's understandable that documentary producers like a clear-cut argument, but skewing the evidence to fit the theory is inexcusable for a scientist. Dawkins' use of probability is his most objective method in support of atheism but when the law of parsimony, otherwise known as Occam's razor, cannot obviously be applied to resolve many aspects of the sub-atomic world, how can a glib theory along the lines of "I believe there's a less than even chance of the existence of a deity, therefore there isn't a deity", be accepted any more than a literal interpretation of Genesis? Warning of the increasing dangers of fundamentalism to both science and society as a whole is admirable, but to promote a simplistic thesis regarding complex, largely non-scientific, issues seems more an exercise in self-promotion than anything else. And Dawkins has the cheek to say that the word 'reductionism' makes him want to reach for a weapon...

It pains me to say it but I'm not sure either of the dynamic duo, somewhat atypical scientists as they undoubtedly are, can be said to be ideal promoters of science. If such excellent communicators as Martin Rees, Richard Fortey, or Brian Cox were as well known as Hawking and Dawkins is it more likely we see an increase in science exposition and less media shenanigans? At the end of the day fame is very fickle, if the example of Magnus Pyke is anything to go by. Ubiquitous in the 1970s and '80s, Pyke appeared in everything from a best-selling pop single (and its video) to a washing machine commercial. Voted third in a 1975 New Scientist poll only to Einstein and Newton as the best-known scientist ever, this charismatic and socially-aware 'boffin' is unfortunately almost forgotten today. But then an American business magazine recently claimed that Hawking was an American, no doubt lulled by the speech synthesiser into a false sense of security...

Technorati Tags: , ,