Showing posts with label Virgin Galactic. Show all posts
Showing posts with label Virgin Galactic. Show all posts

Wednesday, 21 February 2018

Teslas in space: trivialising the final frontier

Earlier this month Elon Musk's SpaceX achieved great kudos thanks to the maiden flight of the Falcon Heavy rocket and recovery of two of the three first stage boosters. Although it has the fourth highest payload capacity in the history of spaceflight, the test did not include satellites or ballast but the unlikely shape of Musk's own $100,000 Tesla Roadster, complete with dummy astronaut. Perhaps unsurprisingly, the unique payload of this largely successful mission has led to it being labelled everything from a pioneering achievement to a foolish publicity stunt. So what's the truth behind it?

I discussed the near-future development of private spaceflight back in 2012 and if there's one thing that the programmes mentioned therein have in common is that they have all since been delayed. Rocket technology has proved to be more tricky than the current crop of entrepreneurs envisaged, Elon Musk himself giving the Falcon Heavy a fifty-fifty chance of success. As it was, two of the core booster's engines failed to fire before touchdown, leading it to crash into the sea. Musk admitted that due to safety concerns this design will never - as originally intended - be used to launch crews into space. But a successful first flight for such a large vehicle had the potential to bring enormous kudos - translate that to customers - at the expense of his lagging rivals.

It could be argued that with such a high probability of getting egg on his face, Musk was right to choose a joke payload, albeit an expensive one, as opposed to boring ballast or a (presumably heavily-insured) set of commercial satellites. Even so, some critics have argued that there is enough manmade junk floating around the solar system without adding the Tesla, never mind the slight risk of a crash-landing on Mars. The latter might seem of little import, but there's presumably the risk of microbial contamination - it's thought some bacteria could survive atmospheric entry - and as yet we're far from certain whether Martian microbes might exist in places sheltered from the ultraviolet flux.

However, researchers have run computer simulations and if anything, Earth stands a far greater chance of being the Tesla's target, albeit millions of years in the future. Indeed, Venus is the next most likely, with Mars a poor third. That's if the car doesn't fall apart long before then due to the radiation, temperature variations and micrometeoroid impacts: the 70,000km/h or so velocity means that even dust grains can behave like bullets and there's plenty of natural rock fragments whipping around the solar system.

Musk has said that his low-cost, private alternative to state-led missions is intended to spur competitors into developing similarly reusable launch vehicles, bearing in mind that fossil fuel-powered rockets are likely to be the only way into space for some time to come. Talking of Government-controlled space programmes, NASA has long since decided to concentrate on research and development and leave much of the day-to-day operations, such as cargo runs to the International Space Station, to commercial outfits. In other words, Elon Musk is only touting for business much like any other corporation. His customers already include the communications company Arabsat and the United States Air Force, so interest in the new rocket is clearly building.

As to whether Musk should have fired a $100,000 car on a one-way trip (thanks to orbital mechanics, it's not strictly speaking one-way of course but let's face it, he's never going to get it back) it also comes down to a matter of taste, when you consider the environmental and economic crises facing humanity and the planet in general. The reusability factor to the Falcon Heavy rocket design does assuage the ecological aspect, but only slightly; rockets are a pretty primitive form of transport with some hefty pollutant statistics. Unfortunately, they currently have the monopoly on any space travel for the foreseeable future - I wonder if Virgin Galactic passengers could be encouraged to buy carbon credits?

A rather smaller rocket also launched into the headlines last month in the form of the US-New Zealand Rocket Lab's Electron vehicle. Cheekily called 'Still Testing', this second - and first successful - flight of the two-stage Electron paves the way for New Zealand-based launches of small satellites at comparatively low cost. This particular mission launched several commercial satellites plus the controversial 'Humanity Star', a reflective one-metre geodesic sphere that has been likened to both a disco ball and 'glittery space garbage'. Set to decay and burn up after nine months, Rocket Lab's founder Peter Beck intended it to generate a sense of perspective among the wider public but it has instead instigated a lot of negative commentary from astronomers, environmentalists and people who enjoy getting annoyed about almost anything.

Again, all publicity might seem like good publicity, but it goes to show that many people like their space technology serious and on the level, not frivolous or containing airy gestures (or should that be vacuous ones, space being space and all?) Even this individual rocket's name goes against tradition, which usually comes down to either Greco-Roman machismo or dull acronyms such as NASA's new SLS. In addition, to the unaided eye the cosmos appears to be largely pristine and pure, lacking the visual noise that commercialism bombards us with down here on Earth. Therefore the Humanity Star appears a bit tacky and is unlikely to supply the inspiration that Beck intended, a symbol that is somewhat too puny for its lofty purpose.

An older example of an out-and-out publicity stunt at the edge of space is Felix Baumgartner's record-breaking freefall jump back in October 2012. The Red Bull Stratos mission claimed to be a serious technology test (of for example, the reefed parachute design) as well as a medical experiment on the effects of supersonic travel on a human body outside a vehicle but ultimately it appeared to be an opportunity to fulfil, at least approximately, the company slogan 'Red Bull gives you wings'.

It could be argued that the jump aided research into escaping from damaged spacecraft, but even my limited understanding of the physics involved suggests an enormous difference between Baumgartner's slow, helium-led ascent and the velocity of both newly-launched rockets and deorbiting spacecraft. The mission also claimed to be at the 'edge of space' but at thirty-nine kilometres above the Earth, the altitude was far below the nominal one hundred kilometre boundary known as the Kármán line. As so often the case in advertising, why adhere to the facts when hyperbole will help to sell your product instead? Although the jump broke a fifty-two year old free-fall altitude record, it has since been beaten in much quieter fashion by Google's Senior Vice President of Knowledge, no less. In October 2014 Dr. Alan Eustace undertook a slightly higher self-funded jump that was devoid of publicity, suggesting that far from being a technological milestone, these jumps are more akin to climbing Mount Everest: once the pioneer has been successful, the mission becomes relatively routine.

With a cynical eye it would be very easy to claim that these three missions are the result of over-inflated egos and crass commercialism. The practical issue of unnecessary space junk, combined with the uneasy impression that the universe is now available as a billboard for selling stuff, have soured these projects for many. Several space stations have already utilised food tie-ins while in 1999 Coca Cola investigated projecting advertising onto the moon, only to find the lasers required would be too powerful to be allowed (perhaps they should have contacted Dr Evil?)

In 1993 the US Government banned 'obtrusive' advertising in space, but this hasn't stopped companies in other nations from planning such stunts. A Japanese soft drink manufacturer announced in 2014 that it wanted to land a capsule of its powered Pocari Sweat beverage (sounds delightful) on the moon, the launch vehicle being none other than a SpaceX Falcon rocket. With NASA's increasing reliance on private companies, is it only a matter of time before the final frontier becomes a mere extension of the noisy, polluted, consumer goods-obsessed environment we call civilisation? Frankly, we've made a pig's ear of our planet, so how about we don't make profit margins our number one concern in outer space too?

Saturday, 28 February 2015

Have spacecraft, will travel: planning the first manned Mars mission

As a space travel enthusiast since I was knee-high to a grasshopper it took me many years to appreciate robot probe missions with anything like the zeal engendered by manned spaceflight. As a schoolboy I watched the first space shuttle mission launch in 1981; no doubt like a multitude of others I initially considered this the start of the ‘casual' rather than pioneering phase of astronautics. Therefore it wasn't long before I asked myself the obvious question: when will there be a crewed mission to Mars?

Mars seems extremely familiar, no doubt due to the myriad of science fiction novels and films concerning the Red Planet. The last decade has seen a proliferation of news stories as various orbiters and rovers gather enormous amounts of - at times puzzling - data. However, none of the numerous projects of all scales that have investigated a manned mission have ever lifted off the launch pad. So here's a brief look at the state of play, not to say of course that this might not look woefully dated within the next few years.

1) Who will go to Mars?

Obviously the USA will supply the most funding so they will run the show. Or will they? The NASA budget available for planetary science is less than half that for International Space Station (ISS) operations, although of course the former are all unmanned missions. In fact, the Planetary Society has claimed that NASA spends less each year on interplanetary probes than the USA does on dog toys! A manned mission would have to negate this trend, as realistic estimates could be around US$500 billion for a single mission.

President Obama's announced half-billion dollar increase to the NASA budget is unlikely to be replicated by any Tea Party candidate who might (God forbid) achieve power. Unless that is we see a return to Cold War rivalries, with China offering a two-horse race to Mars. That might sound unlikely, but in 2006 the Chinese Government announced a long-term goal to land a crew there between 2040 and 2060. Since the US refused to allow them ISS involvement due to not wanting its technology to become available to Beijing, it is doubtful the Whitehouse would be any happier to cooperate in a Mars mission.

Either way, it's probable that some of the ISS partners would collaborate. However unrealistic it now appears in light of the financial crisis, back in 2001 the European Space Agency (ESA) announced its own plan for a crewed Mars landing in the 2030s. There was even a suggestion to include Russia as a minority partner, but the political situation there may prove prohibitive.

It doesn't just have to be other Western nations who participate in a NASA-led project, as numerous private companies are now involved in the commercial space programme. No doubt collaboration between some of the long-established aerospace giants and recent start-ups such as Space-X - whose long-term goal is to establish a Martian colony - with various Western governments would be more palatable to finance ministers. But it's still early days for the private sector: smaller infrastructure may shorten timescales compared to monolithic state enterprise, but as the Virgin Galactic SpaceshipTwo crash shows, developing even sub-orbital craft at this level still carries enormous risk.

So all in all, it could be the US and ESA, with or without substantial private investment, or China in a race with a Western bloc or (as an extreme longshot) Dutch engineer and entrepreneur Bas Lansdorp, whose Mars One mission plans to regularly send crews of four non-professional astronauts on a one-way trip to the Red Planet from 2025. So far he has raised about 1/8000th of the project's already shoestring budget, but that hasn't stopped thousands of would-be colonists from applying. In addition to the necessary privations, these volunteers would also be the subjects of a fund-raising reality television show. If doesn't sound even vaguely like the product of an insane society then I don't know what is. Perhaps we should just turn our backs on the rest of the universe and just spend our lives uploading selfies to social media sites?

2) What will happen?

In theory it sounds simple: a small group of professional astronauts with various scientific backgrounds will spend up to two years on a high-risk mission, exploring the Martian surface for perhaps a month or so, then bring back copious samples of rock, soil, atmosphere and ice for more detailed examination on Earth.

The BBC ‘s 2004 mockumentary Space Odyssey: Voyage to the Planets showed the deadly effects that ionizing radiation can have on interplanetary travellers. The Mars Science Laboratory, carrier of the Curiosity rover, spent the Earth to Mars transit recording the radiation levels. It confirmed that they were high enough to risk crew members contracting various serious conditions such as cataracts and cancer. Incidentally, female astronauts would apparently be more prone to radiation-induced cancers than male colleagues. A 2012 mission plan considered developing an electromagnetic anti-radiation shield, but most designs are looking to use traditional aluminium construction, perhaps with polyethylene shielding around the pressurised cabins. This definitely appears to be a case of fingers crossed as much as relying on advanced materials science.

The long duration spent in shipboard micro-gravity will also cause physical problems such as bone and muscle deterioration. The astronauts/cosmonauts/taikonauts (delete as preferred) will then have to adjust on Mars arrival to the one-third Earth gravity. As well as avoiding radiation on the Martian surface they will have to minimise contamination from the fine dust: minute particles suspended in the atmosphere could cause lung and thyroid problems if allowed into the lander cabin.

Besides the physical problems, the pioneering crew will also have to contend with the psychological effects of having travelled further from the Earth than any other humans - by an enormous margin. It's one thing to undertake a mission on the ISS - with a regular exchange of crew and a close-up view of the Earth via the cupola - but quite another to spend several years away from fresh air, blue skies, and all the other fantastic things we take for granted. The interplanetary distances would of course be exacerbated by the lack of real-time conversation: the one-way journey time for radio signals from the Martian surface is between four and twelve minutes.

There has been much research into astronaut's disturbed sleep patterns, which can obviously have deleterious effects on their work as well as their mental health. The claustrophobic conditions may contribute too: negative emotions blighted the small group of inhabitants of the Arizona-based Biosphere 2 sealed ecosystem in the 1990s. In addition, this experiment had distinct problems maintaining the environment, with a primary issue being the fluctuating oxygen and carbon dioxide levels. All in all, there are likely to be problems even the best planned mission won't have predicted.

3) When will it take place?

By comparison to low Earth orbit missions, a trip to Mars would be several magnitudes greater. If you want a pioneering aviation analogy I've just figured out that ratio of the Earth-Moon distance compared to the mean Earth-Mars distance is akin to the Wright Brothers' first flight of 36.5 metres being followed up by another spanning over 5 kilometres!

I can foresee two main issues to consider when planning mission timelines, which should ideally coincide to suggest an ideal launch window. The first is the relative orbital mechanics of the two bodies, which can be exploited so as to utilise a minimum fuel trajectory. The second relies on the eleven-year solar cycle: maximal solar activity helps to block interstellar cosmic rays and so reduce the risk of radiation poisoning. Although the sun's output would be at its peak, the astronauts would be safe from solar flares and coronal mass ejections providing they didn't need to undertake any spacewalks or surface EVAs for their duration.

There are several research projects that if one were to prove successful, could reduce by several decades the time before humanity is ready for its first manned Mars flight. The University of Washington and Lockheed Martin are both working on nuclear fusion technology suitable for such a mission. By reducing the journey time from between six and eight months to just three months there would be far less health risk to the crew, as well as presumably considerable weight savings on air and consumables.

Therefore it may become feasible as early as the 2040s but I doubt any earlier, regardless of how much advance is made in fusion technology. On top of all the usual political and socio-economic fluctuations there are just too many important longer-term issues that need resolution here first.

4) Where will it take place?

Mars, of course! The planet has a wide variety of locales (hint of travel brochure there), some rather more interesting than others. If the public get to vote on sites for exploration - bearing in mind that taxpayers will no doubt be funding the majority of the mission - conspiracy theorists and assorted nutbars might promote the curious tetrahedrons (note, not pyramids) of Elysium. Presumably they're enormous ventifacts, but they still appear to be very interesting geological features.

Then there's the great canyon system of Valles Marineris, over 4000 kilometres long and up to 7 kilometres deep. Or how about the 25 kilometre high Olympus Mons and its surrounding escarpment? In Pale Blue Dot: A Vision of the Human Future in Space, Carl Sagan suggested that it might be fruitful to explore the slopes of the Martian volcanoes in case they are scattered with diamonds ejected from the carbon-rich mantle!

Other locations that are just begging for detailed exploration are the polar caps, now thought to be mostly composed of water ice rather than frozen carbon dioxide, and caves or caverns, which would not only be a good place to search for native microbes but also to hide from radiation or dust storms.

5) Why will it happen?

This is perhaps the most difficult question to answer. Carl Sagan argued that the mission would fulfil the deep-seated need for exploration that our species - only recently converted from a nomadic existence - still feels. There is something to be said of this provision of a surrogate for human wanderlust, as identified in Bertrand Russell's 1959 quote: "a world without war need not be a world without adventurous and hazardous glory." This form of argument seems fairly mainstream in astronautic circles: even NASA's budget estimate for 2016 includes the phrases ‘reveal the unknown' (very likely) and ‘benefit all humankind' (which seems rather less obvious, except for Earth resources and weather satellites).

Against this notion are rather more pragmatic motives such as a combination of accelerated technological development and national prestige. But if nuclear fusion power is acquired in time for the first mission it's difficult to see what else will be gained from spending say half a trillion US dollars on a single crewed flight: wouldn't it be wiser to spend such vast sums on environmental stabilisation or medical research here on Earth? I've already commented on the potential white elephant of the ISS and there are no doubt many who don't consider any manned space exploration a suitable use of such enormous resources.

It's obvious that there are distinctive practical advantages to having humans on the spot rather than relying on robots. One issue that a single manned mission might be able to resolve that countless probes wouldn't is the question of life on Mars. The haze and plume seen in 2012 and the seasonal methane suggest some very interesting meteorological phenomenon if there isn't a biological explanation, but if there is any Martian bacteria then surely the mission could be deemed worthy of its immense budget? Somehow, I have my doubts…

One day in the next few centuries there could well be - unfortunately - branches of Starbucks and McDonalds on Mars and the Red Planet will be an alien frontier no more. But until then, any humans who undertake such an incredible journey will be pioneers in the Yuri Gagarin/Roald Amundsen/Edmund Hillary mould. However, I doubt the first human to step onto the Martian surface will use the latter's keen Kiwi phraseology: "we knocked the b***d off!"

Monday, 30 July 2012

Buy Jupiter: the commercialisation of outer space

I recently saw a billboard for the Samsung Galaxy SIII advertising a competition to win a "trip to space", in the form of a suborbital hop aboard a Virgin Galactic SpaceshipTwo. This phrase strikes me as highly interesting: a trip to space, not into space, as if the destination was just another beach holiday resort. The accompanying website uses the same wording, so clearly the choice of words wasn't caused by space issues (that's space for the text, not space as in outer). Despite less than a dozen space tourists to date, is space travel now considered routine and the rest of the universe ripe for commercial gain, as per the Pan Am shuttle and Hilton space station in 2001: A Space Odyssey? Or is this all somewhat premature, with the hype firmly ahead of the reality? After all, the first fee-paying space tourist, Dennis Tito, launched only eleven years ago in 2001.

Vodafone is only the second company after Guinness Breweries to offer space travel prizes, although fiction was way ahead of the game: in Arthur C. Clarke's 1952 children's novel Islands in the Sky the hero manages a trip into low Earth orbit thanks to a competition loophole.  However, the next decade could prove the turning point. Virgin Galactic already have over 500 ticket-holders whilst SpaceX, developer of the first commercial orbital craft - the unmanned Dragon cargo ship - plan to build a manned version that could reduce orbital seat costs by about 60%.

If anything, NASA is pushing such projects via its Commercial Orbital Transportation Services (COTS) programme, including the aim of using for-profit services for the regular supply of cargo and crew to the International Space Station (ISS). The intention is presumably for NASA to concentrate on research and development rather than routine operations, but strong opposition to such commercialisation comes from an unusual direction: former NASA astronauts including Apollo pioneers Neil Armstrong and Eugene Cernan deem the COTs programme a threat to US astronautic supremacy. This seems to be more an issue of patriotism and politics rather than a consideration of technological or scientific importance. With China set to overtake the USA in scientific output next year and talk of a three-crew temporary Chinese space station within 4 years, the Eclipse of the West has already spread beyond the atmosphere. Then again, weren't pre-Shuttle era NASA projects, like their Soviet counterparts, primarily driven by politics, prestige, and military ambitions, with technological advances a necessary by-product and science very much of secondary importance?

Commerce in space could probably be said to have begun with the first communications satellite, Telstar 1, in 1962. The big change for this decade is the ability to launch ordinary people rather than trained specialists into space, although as I have mentioned before, the tourist jaunts planned by Virgin Galactic hardly go where no-one has gone before. The fundamental difference is that such trips are deemed relatively safe undertakings, even if the ticket costs of are several orders greater than any terrestrial holiday. A trip on board SpaceShipTwo is currently priced at US$200,000 whilst a visit to the International Space Station will set you back one hundred times that amount. This is clearly somewhat closer to the luxury flying boats of the pre-jet era than any modern package tour.

What is almost certain is that despite Virgin Galactic's assessment of the risk as being akin to 1920s airliners, very few people know enough of aviation history's safety record to make this statistic meaningful. After all, two of the five Space Shuttle orbiters were lost, the latter being the same number intended for the SpaceshipTwo fleet. Although Virgin Galactic plays the simplicity card for their design - i.e. the fewer the components, the less the chance of something going wrong - it should be remembered that the Columbia and Challenger shuttles were lost due to previously known and identified problems with the external fuel tank and solid rocket boosters respectively. In other words, when there is a known technical issue but the risk is considered justifiable, human error enters the equation.

In addition, human error isn't just restricted to the engineers and pilots: anything from passenger illness (about half of all astronauts get spacesick - headaches and nausea for up to several days after launch) to disruptive behaviour of the sort I have witnessed on airliners. Whether the loss of business tycoons or celebrities would bring more attention to the dangers of space travel remains to be seen. Unfortunately, the increase in number and type of spacecraft means it is almost certainly a case of when, not if.

Planet Saturn via a Skywatcher telescope

Location location location (via my Skywatcher 130PM)

But if fifteen minutes of freefall might seem a sublime experience there are also some ridiculous space-orientated ventures, if some of the ludicrous claims found on certain websites are anything to go by. Although the 1967 Outer Space Treaty does not allow land on other bodies to be owned by a nation state, companies such as Lunar Embassy have sold plots on the Moon to over 3 million customers. It is also possible to buy acres on Mars and Venus, even if the chance of doing anything with it is somewhat limited. I assume most customers treat their land rights as a novelty item, about as useful as say, a pet rock, but with some companies issuing mineral rights deeds for regions of other planets, could this have serious implications in the future? Right now it might seem like a joke, but as the Earth's resources dwindle and fossil fuels run low, could private companies race to exploit extra-terrestrial resources such as lunar Helium 3?

Various cranks/forward thinkers (delete as appropriate) have applied to buy other planets since at least the 1930s but with COTs supporting private aerospace initiatives such as unmanned lunar landers there is at least the potential of legal wrangling over mining rights throughout the solar system. The US-based company Planetary Resources has announced its intention to launch robot mining expeditions to some of the 1500 or so near-Earth asteroids, missions that are the technological equivalent of a lunar return mission.

But if there are enough chunks of space rock to go round, what about the unique resources that could rapidly become as crowded as low Earth orbit? For example, the Earth-Moon system's five Lagrange points are gravitationally stable positions useful for scientific missions, whilst geosynchronous orbit is vital for commercial communication satellites. So far, national governments have treated outer space like Antarctica, but theoretically a private company could cause trouble if the law fails to keep up with the technology, in much the same way that the internet has been a happy harbour for media pirates.

Stephen Hawking once said "To confine our attention to terrestrial matters would be to limit the human spirit". Then again, no-one should run before they can walk, never mind fly. We've got a long way to go before we reach the giddy heights of wheel-shaped Hiltons, but as resources dwindle and our population soars, at some point it will presumably become a necessity to undertake commercial space ventures, rather than just move Monte Carlo into orbit. Now, where's the best investment going to be: an acre of Mars or two on the Moon?

Monday, 24 May 2010

Come fly with me: private industry and future of manned spaceflight

As Major Tim Peake undergoes training as the first British citizen to join the European Space Agency's (ESA) Astronaut Corps, it's an interesting time to consider to what extent manned spaceflight will migrate from the state to private sector over the next decade or two. With the International Space Station (ISS - you can see the acronyms mounting) soon to be without the shuttle fleet, not to mention short of an emergency escape vehicle following on-again/off-again Crew Return Vehicle projects, some form of return to earth vehicle will surely be needed. Back in the 1980s at least one Soviet cosmonaut is supposed to have required a prompt return to Earth following a medical problem, but the ISS crew is too large to squeeze into a single venerable Soyuz ferry. It looks like NASA has managed to resurrect the Orion Crew Exploration Vehicle as a lifeboat, eventually…but in the meantime, will the ISS be forced to look to the private sector?

The current centre of attention as far as private manned spaceflight goes is Richard Branson's Virgin Galactic, with its $200,000 price tag for a suborbital hop in a SpaceShipTwo. The flight plan is nothing new - NASA's first two astronauts did something similar nearly half a century ago - but for a private company to achieve this is, or rather will be, astonishing. Any attempt to compare the development of spaceflight to commercial air travel is a failure: the differences in scale and logistics are too profound to allow any meaningful comparison. The margins for error are that much smaller with spaceflight, and whilst the cost of astronaut training is considerable, the cost of a space vehicle that much more. Unfortunately, and ironically, the success of science fiction has led to a widespread ignorance concerning the practicalities and dangers facing astronauts. For example, low Earth orbit has the mounting danger of man-made junk and debris, ranging from lost tools to frozen ejected fecal matter, with estimates for 'detectable' objects alone put at 10,000. According to NASA, this constitutes a 'critical level' of debris. One Soyuz mission in the 1980s suffered minor impact damage to a window, although this could have been a micrometeroid rather than man-made. Nonetheless, seeing as Star Trek deflectors aren't yet fitted as standard, at some point someone is presumably going to have start clearing up this mess.

In variance to Western capitalists looking to make commercial achievements in the human spaceflight sector (unlike say the existing success with communications and other unmanned satellites), both China and India are developing state-led programmes. The first Chinese manned spacecraft, a souped-up Soyuz clone, launched in 2003, whilst the Indian Space Research Organisation (ISRO) plans, with Russian aid, to launch its first astronauts circa 2015. Whether politics and national pride will push American and European entrepreneurs to compete is open to question, but it's possible they will sit alongside raw commercialism as a driving force, with science taking a poor fourth place. Then again, President Obama's speeches have contained arguments along just these lines. Following on from the 2004 Commercial Space Launch Amendments Act, NASA instigated several ISS-orientated programmes such as Commercial Orbital Transportation Services (COTS) and Commercial Resupply Services (CRS), the intention being to free NASA from mundane day-to-day operations thus leaving more resources for R&D (research and development, if you weren't sure). Although initially intended to be cargo craft only, the potential for private sector crewed spacecraft, such as the SpaceX Dragon, is seen as the obvious next step. The problem is that some of the potential private contractors have very little experience of space operations. Or indeed, none. For every Boeing or Lockheed Martin there are an awful lot of small companies looking for a piece of orbital pie; if the success rate matches that of earlier attempts, there are going to be a lot of aerospace corporations filing for bankruptcy.

As early as the 1970's private companies attempted to build satellite launchers, such as OTRAG (go on then: Orbital Transport und Raketen AG, if you must know), only to founder due to technological difficulties, funding shortfalls and political pressure. More recent failures include the now defunct Rotary Rocket company's Roton crewed transport, and NASA's dropping of Rocketplane Kistler in 2008, but in these cases the lack of technical success was the primary cause. It would appear the future, at least for the USA, lies in cooperation between state and industry. Whether the latter will gain riches from microgravity research in pharmaceuticals and smart materials remains to be seen; as Carl Sagan once argued, many of the so-called Apollo breakthroughs could have probably been made for far less money than was spent on the moon landing programme. Perhaps a decline in fossil fuels may lead to new exotic energy projects, such as the mining of lunar helium-3, but the global economy may have to be on much more steady footing for anything as epic as this to be considered. Otherwise it's difficult to identify just where a private contractor could be certain of potential returns from manned spaceflight. Perhaps Richard Branson's quick thrills approach may be the best bet for now!

But are there any indicators as to what the near future might hold? SpaceX Dragon and the recently curtailed Orion are both conventional capsule designs. More advanced projects such as the (initially unmanned) Lockheed Venture Star were cancelled due to difficulties with the engine design, perhaps a primary reason for NASA deciding to play it safe with the Constellation programme's Orion and the Altair lunar lander. Speaking of the latter, President Obama's speech earlier this year placed human expeditions to the moon and Mars in the 2025-2030 time bracket, a safe distance from his White House tenure. I seem to recall all US presidents since, and perhaps including, Reagan, have taken a pot-shot at a manned Mars mission (acronym: mmm - speaks for itself, really.) I would take any such timescale with a large pinch of salt. Admittedly, Obama has proposed large budget increases for NASA, guaranteed to generate more than 2,500 jobs in Florida alone. But like many aspects of the Soviet Union's Five Year Plans, is the intention to promote economic growth, the outcome of the projects themselves being on secondary importance? US presidents of the past few decades have not exactly been known for their scientific acumen. Competition between private companies is an ideal way of generating R&D whilst minimising tax payers' investments, but if these corporations don't succeed in establishing a comprehensive level of interaction with NASA there could be trouble afoot. After all, it isn't so many years since a software contractor mixed up imperial with metric units, causing the in-flight loss of the Mars Climate Orbiter.

One potential benefit of increased manned space travel that has been advanced by both the White House as and NASA is the promotion of spaceflight to the general public. With digital entertainment and web empowerment, along with environmental and economic concerns, having taken centre stage in the minds of the post-Apollo generations, an increase in space tourism may have greater impact on the public than the lacklustre coverage of the ISS. If Virgin Galactic can pull off it's enterprise (N.B. that's a joke - the first Spaceship Two will of course be named VSS Enterprise), then perhaps spaceflight will become cool again. This in turn may inspire a new generation of engineers and designers, especially to seek much-needed alternatives to fossil fuels. In an idea reminiscent of Arthur C. Clarke's children's novel Islands in the Sky, last year the brewery company Guinness announced a competition prize of a seat on a Virgin Galactic craft. So although it may be a far cry from the Pan Am Orion spaceplane in 2001: A Space Odyssey, nonetheless it's very much a case of "watch this space..."

Technorati Tag:

Saturday, 19 December 2009

Warp engines offline, Captain: has science fiction become confused with science fact?

The current bickering in Copenhagen seemingly ignores a rather pertinent issue: our skills and experience in reversing climate change are almost exactly zero. Of course we can drastically cut back on fossil fuels, increase energy efficiency and possibly even slow down population growth, but there is little on the technological horizon that can profoundly alter the climate in favour of our species. Yet the implicit view seems to be that if a political solution is found then a practical solution will follow in due course.

So why is it assumed that given enough Government funding, the people in white lab coats can perform miracles of climate engineering? This attitude is symptomatic of an ever-widening gap between the scientific forefront and public perception. Many strands of contemporary science are so detached from everyday life that they inhibit straightforward public assimilation, whilst the ubiquity of electronic consumer goods may be lulling us into a false sense of security regarding our abilities. We are surrounded by 'space age' gadgets and technology from Wii to Wi-Fi that only a generation ago were strictly for James Bond. And with Virgin Galactic seemingly about to usher in a new age of space tourism, becoming an astronaut will be akin to a very expensive form of air travel, though a sub-orbital hop hardly counts as boldly going anywhere.

Another possible cause that doesn't seem to have gained much notice is the influence of science fiction films and television series. With their largely computer-generated visual effects, most Hollywood product effortlessly outshines any real life counterpart. For example, doesn't the International Space Station (ISS) resemble nothing so much as a bunch of tin cans linked by Meccano struts? Yet the ISS is about as good as ultra-expensive high-technology gets, being by far the largest man-made structure ever assembled in orbit. Given a choice between watching ISS crew videos (Thanksgiving dinner with dehydrated turkey, anyone?) and the likes of Bruce Willis saving mankind from doomsday asteroids, most people unmistakably opt for the latter.

Now that the majority of humans live in crowded conurbations far removed from our ancestral peripatetic existence, the desperation for new horizons is obvious. Yet our exploratory avatars such as the Mars rovers hardly qualify as charismatic heroes, hence the great appeal of fictional final frontiers. The complex interplay between reality and fiction is further confused by the new genre of "the science behind…" book. Frequently written by practicing scientists for the likes of Star Trek, The X-Files, Dr Who, etal, the blurring of boundaries can be exemplified by one buyer of The Physics of Star Trek who compared it to A Brief History of Time (although admittedly Stephen Hawking did write the foreword to the former).

Furthermore, the designers of such disparate items as medical monitoring equipment, flip top phones and military aircraft instrumentation have been inspired by Hollywood originals to such an extent that feedback loops now exist, with arcade simulators inspiring real hardware which in turn inspire new games. Articles discussing quantum entanglement experiments seem obliged to draw a comparison with the Star Trek matter transporter, though the transportees are as yet only photons. Theoretical physicist Miguel Alcubierre has even spent time exploring the fundamentals for a faster-than-light 'warp' drive, although it's unlikely to get beyond calculations for some little while. Blue-sky thinking is all very well, but there are plenty of more pressing issues that our finest minds could be working on...

Closer to home, it appears that a lot of the hype surrounding sustainable development is just that. Are we simply in thrall to companies hoping to make a fast buck out of fear, flogging us technologies about as useful as a chocolate teapot? A recent report suggested that the typical British home would gain only minute amounts of electricity from installing solar panels and wind turbines, although the development of spray-on solar cells may drastically improve efficiency in the next few years. But where does this leave us now? Although our species has endured sudden, severe climate changes such as the end of the last glaciation ten thousand years ago, current population density and infrastructure forbid anything as simple as packing our things and moving to higher ground. Cutting back on fossil fuel consumption is clearly necessary, but isn't it equally as important to instigate long-term research programmes in case some of the triggers are due to natural causes such as the Milankovitch cycles? If global temperature increase is inevitable, never mind potential cooling in Western Europe due to a diverted Gulf Stream, then reducing greenhouse gas emissions is merely the tip of the iceberg (sorry, couldn't resist that one).

Anyone who looks back at the grandiose pipe dreams of the 1960's can see that our technological ambitions have profoundly reduced in scope since their idealistic heyday; what we have gained in the micro-scale technologies, we have lost in the giant engineering projects envisaged by likes of Gerard O'Neill, Freeman Dyson, and Arthur C. Clarke. Yet Thunderbirds-style macho engineering is presumably the type we will need to develop if we are heading for a chain reaction of environmental change.

Restructuring an ailing climate will take more than a few decades of recycling and installation of low-voltage light bulbs - we will have to mobilise people and funds on a unique scale if we are not to prove powerless against the mighty engine of Planet Earth. To this end we need to spread the message of our own insignificance, mitigated by research into alleviating the worst-case scenarios: there can be no Hollywood-style quick-fixes to the immense forces ranged against us. No-one could argue that even short-term weather forecasting is an exact science, so discovering whatever trouble the Quantum Weather Butterfly has in store for us will keep earth scientists engaged for many years to come (and there I go again, confusing fiction with reality, doh!)