Showing posts with label Star Trek. Show all posts
Showing posts with label Star Trek. Show all posts

Tuesday, 17 March 2020

Printing ourselves into a corner? Mankind and additive manufacturing

One technology that has seemingly come out of nowhere in recent years is the 3D printer. More correctly called additive manufacturing, it has only taken a few years between the building of early industrial models and a thriving consumer market - unlike say, the gestation period between the invention and availability of affordable domestic video cassette recorders.

Some years ago I mentioned the similarities between the iPAD and Star Trek The Next Generation's PADD, with only several decades separating the real-world item from its science fiction equivalent. Today's 3D printers are not so much a primitive precursor of the USS Enterprise-D's replicator as a paradigm shift away in terms of their profound limitations. And yet they still have capabilities that would have seemed incredibly futuristic when I was a child. As an aside, devices such as 3D printers and tablets show just how flexible and adaptable we humans are. Although my generation would have considered them as pure sci-fi, today's children regularly use them in schools and even at home and consider the pocket calculators and digital watches of my childhood in the same way as I looked at steam engines.

But whilst it can't yet produce an instant cup of earl grey tea, additive manufacturing tools are now being tested to create organic, even biological components. Bioprinting promises custom-made organs and replacement tissue in the next few decades, meaning that organ rejection and immune system repression could become a thing of the past. Other naturally-occurring substances such as ice crystals are also being replicated, in this case for realistic testing of how aircraft wings can be designed to minimise problems caused by ice. All in all, the technology seems to find a home in practically every sector of our society and our lives.

Even our remotest of outposts such as the International Space Station are benefiting from the use of additive manufacturing in cutting-edge research as well as the more humdrum role of creating replacement parts - saving the great expense of having to ship components into space. I wouldn't be surprised if polar and underwater research bases are also planning to use 3D printers for these purposes, as well as for fabricating structures in hostile environments. The European Space Agency has even been looking into how to construct a lunar base using 3D printing, with tests involving Italian volcanic rock as a substitute for lunar regolith.

However, even such promising, paradigm-shifting technologies as additive manufacturing can have their negative aspects. In this particular case there are some obvious examples, such as home-printed handguns (originally with very short lifespans, but with the development of 3D printed projectiles instead of conventional ammunition, that is changing.) There are also subtle but more profound issues that arise from the technology, including how reliance on these systems can lead to over-confidence and the loss of ingenuity. It's easy to see the failure due to hubris around such monumental disasters as the sinking of the Titanic, but the dangers of potentially ubiquitous 3D printing technology are more elusive.

During the Apollo 13 mission in 1970, astronauts and engineers on the ground developed a way to connect the CSM's lithium hydroxide canisters to the LM's air scrubbers, literally a case of fitting a square peg into a round hole. If today's equivalents had to rely solely on a 3D printer - with its power consumption making it a less than viable option - they could very well be stuck. Might reliance on a virtual catalogue of components that can be manufactured at the push of a button sap the creativity vital to the next generation of space explorers?

I know young people who don't have some of the skills that my generation deemed fairly essential, such as map reading and basic arithmetic. But deeper than this, creative thinking is as important as analytical rigour and mathematics to the STEM disciplines. Great physicists such as Einstein and Richard Feynman stated how much new ideas in science come from daydreaming and guesswork, not by sticking to robot-like algorithmic processes. Could it be that by using unintelligent machines in so many aspects of our lives we are starting to think more like them, not vice versa?

I've previously touched on how consumerism may be decreasing our intelligence in general, but in this case might such wonder devices as 3D printers be turning us into drones, reducing our ability to problem-solve in a crisis? Yes, they are a brave new world - and bioprinting may prove to be a revolution in medicine - but we need to maintain good, old-fashioned ingenuity; what we in New Zealand call the 'Number 8 wire mentality'. Otherwise, our species risks falling into the trap that there is a wonder device for every occasion - when in actual fact the most sophisticated object in the known universe rests firmly inside our heads.

Tuesday, 23 April 2019

Lift to the stars: sci-fi hype and the space elevator

As an avid science-fiction reader during my childhood, one of the most outstanding extrapolations for future technology was that of the space elevator. As popularised in Arthur C. Clarke's 1979 novel, The Fountains of Paradise, the elevator was described as a twenty-second century project. I've previously written about near-future plans for private sector spaceflight, but the elevator would be a paradigm shift in space transportation: a way of potentially reaching as far as geosynchronous orbit without the need for rocket engines.

Despite the novelty of the idea: a tower stretching from Earth - or indeed any planet's surface - to geosynchronous orbit and beyond; the first description dates back to 1895 and writings of the Russian theoretical astronautics pioneer Konstantin Tsiolkovsky. Since the dawn of the Space Age engineers and designers in various nations have either reinvented the elevator from scratch or elaborated on Tsiolkovsky's idea.

There have of course been remarkable technological developments over the intervening period, with carbyne, carbon nanotubes, tubular carbon 60 and graphene seen as potential materials for the elevator, but we are still a long way from being able to build a full-size structure. Indeed, there are now known to be many more impediments to the space elevator than first thought, including a man-made issue that didn't exist at the end of the nineteenth century. Despite this, there seems to be a remarkable number of recent stories about elevator-related experiments and the near-future feasibility of such a project.

An objective look at practical - as opposed to theoretical - studies show that results to date have been decidedly underwhelming. The Space Shuttle programme started tethered satellite tests in 1992. After an initial failure (the first test achieved a distance of a mere 256 metres), a follow up six years later built a tether that was a rather more impressive twenty kilometres long. Then last year the Japanese STARS-me experiment tested a miniature climber component in orbit, albeit at a miniscule distance of nine metres. Bearing in mind that a real tower would be over 35,000 kilometres long, it cannot be argued that the technology is almost available for a full-scale elevator.

This hasn't prevented continuous research by the International Space Elevator Consortium (ISEC), which was formed in 2008 to promote the concept and the technology behind it. It's only to be expected that fans of the space elevator would be enthusiastic, but to my mind their assessment that we are 'tech ready' for its development seems to be optimistic to the point of incredulity.

A contrasting view is that of Google X's researchers, who mothballed their space elevator work in 2014 on the grounds that the requisite technology will not be available for decades to come. While the theoretical strength of carbon nanotubes meets the requirements, the total of cable manufactured to date is seventy centimetres, showing the difficulties in achieving mass production. A key stopping point apparently involves catalyst activity probability; until that problem is resolved, a space elevator less than one metre in length isn't going to convince me, at least.

What is surprising then is that in 2014, the Japanese Obayashi Corporation published a detailed concept that specified a twenty-year construction period starting in 2030. Not to be outdone, the China Academy of Launch Vehicle Technology released news in 2017 of a plan to actually build an elevator by 2045, using a new carbon nanotube fibre. Just how realistic is this, when so little of the massive undertaking has been prototyped beyond the most basic of levels?

The overall budget is estimated to be around US$90 billion, which suggests an international collaboration in order to offset the many years before the completed structure turns a profit. In addition to the materials issue, there are various other problems yet to be resolved. Chief among these are finding a suitable equatorial location (an ocean-based anchor has been suggested), capturing an asteroid for use as a counterweight, dampening vibrational harmonics, removing space junk, micrometeoroid impact protection and shielding passengers from the Van Allen radiation belts. Clearly, just developing the construction material is only one small element of the ultimate effort required.

Despite all these issues, general audience journalism regarding the space elevator - and therefore the resulting public perception - appears as optimistic as the Chinese announcement. How much these two feedback on each other is difficult to ascertain, but there certainly seems to be a case of running before learning to walk. It's strange that China made the claim, bearing in mind how many other rather important things the nation's scientists should be concentrating on, such as environmental degradation and pollution.

Could it be that China's STEM community have fallen for the widespread hype rather than prosaic reality? It's difficult to say how this could be so, considering their sophisticated internet firewall that blocks much of the outside world's content. Clearly though, the world wide web is full of science and technology stories that consist of parrot fashion copying, little or no analysis and click bait-driven headlines.

A balanced, in-depth synthesis of the relevant research is often a secondary consideration. The evolutionary biologist Stephen Jay Gould once labelled the negative impact of such lazy journalism as "authorial passivity before secondary sources." In this particular case, the public impression of what is achievable in the next few decades seems closer to Hollywood science fiction than scientific fact.

Of course, the irony is that even the more STEM-minded section of the public is unlikely to read the original technical articles in a professional journal. Instead, we are reliant on general readership material and the danger inherent in its immensely variable quality. As far as the space elevator goes (currently, about seventy centimetres), there are far more pressing concerns requiring engineering expertise; US$90 billion could, for example, fund projects to improve quality of life in the developing world.

That's not to say that I believe China will construct a space elevator during this century, or that the budget could be found anywhere else, either. But there are times when there's just too much hype and nonsense surrounding science and not enough fact. It's easy enough to make real-world science appear dull next to the likes of Star Trek, but now more than ever we need the public to trust and support STEM if we are to mitigate climate change and all the other environmental concerns.

As for the space elevator itself, let's return to Arthur C. Clarke. Once asked when he thought humanity could build one, he replied: "Probably about fifty years after everybody quits laughing." Unfortunately, bad STEM journalism seems to have joined conservatism as a negative influence in the struggle to promote science to non-scientists. And that's no laughing matter.

Wednesday, 12 December 2018

New neurons: astrocytes, gene therapy and the public fear of brain modification

Ever since the first cyberpunk novels of the early 1980s - and the massive increase of public awareness in the genre thanks to Hollywood - the idea of artificially-enhanced humans has been a topic of intense discussion. Either via direct augmentation of the brain or the development of a brain-computer interface (BCI), the notion of Homo superior has been associated with a dystopian near-future that owes much to Aldous Huxley's Brave New World. After reading about current research into repairing damaged areas of the brain and spinal cord, I thought it would be good to examine this darkly-tinged area.

Back in 2009 I posted about how science fiction has to some extent been confused with science fact, which coupled with the fairly appalling quality of much mainstream media coverage of science stories, has led to public fear where none is necessary and a lack of concern where there should be heaps. When it comes to anything suggestive of enhancing the mind, many people immediately fall back on pessimistic fictional examples, from Frankenstein to Star Trek's the Borg. This use of anti-scientific material in the consideration of real-world STEM is not an optimal response, to say the least.

Rather than working to augment normal humans, real research projects on the brain are usually funded on the basis that they will generate improved medical techniques for individuals with brain or spinal cord injuries. However, a combination of the fictional tropes mentioned above and the plethora of internet-disseminated conspiracy theories, usually concerning alleged secret military projects, have caused the public to concentrate on entirely the wrong aspects.

The most recent material I have read concerning cutting-edge work on the brain covers three teams' use of astrocytes to repair damaged areas. This is an alternative to converting induced pluripotent stem cells (iPSCs) to nerve cells, which has shown promise for many other types of cell. Astrocytes are amazing things, able to connect with several million synapses. Apparently Einstein's brain had far more of them than usual in the region connected with mathematical thinking. The big question would be whether this accumulation was due to nature or nurture, the latter being the high level of exercise Einstein demanded of this region of his brain.

Astrocyte research for brain and spinal cord repair has been ongoing since the 1990s, in order to discover if they can be reprogrammed as functional replacements for lost neurons without any side effects. To this end, mice have been deliberately brain-damaged and then attempts made to repair that damage via converted astrocytes. The intention is to study if stroke victims could be cured via this method, although there are hopes that eventually it may also be a solution for Parkinson's disease, Alzheimer's and even ALS (motor neurone disease). The conversion from astrocyte to neuron is courtesy of a virus that introduces the relevant DNA, although none of the research has as yet proven that the converted cells are fully functional neurons.

Therefore, it would seem we are some decades away from claiming that genetic manipulation can cure brain-impairing diseases. But geneticists must share some of the blame for giving the public the wrong impression. The hyperbole surrounding the Human Genome Project gave both public and medical workers a false sense of optimism regarding the outcome of the genome mapping. In the late 1990s, a pioneer gene therapist predicted that by 2020 virtually every disease would include gene therapy as part of the treatment. We are only just over a year short of this date, but most research is still in first phase trial - and only concern diseases that don't have a conventional cure. It turned out that the mapping was just the simplest stage of a multi-part programme to understand the complexities of which genes code for which disorders.

Meanwhile, gene expression in the form of epigenetics has inspired a large and extremely lucrative wave of pseudo-scientific quackery that belongs in the same genre as homeopathy, crystal healing and all the other New Age flim-flam that uses real scientific terminology to part the gullible from their cash. The poor standard of science education outside of schools (and in many regions, probably within them too) has led to the belief that changing your lifestyle can fix genetic defects or affect cures of serious brain-based illnesses.

Alas, although gene expression can be affected by environmental influences, we are ultimately at the mercy of what we inherited from our parents. Until the astrocyte research has been verified, or a stem cell solution found, the terrible truth is that the victims of strokes and other brain-based maladies must rely upon established medical treatments.

This isn't to say that we may in some cases be able to reduce or postpone the risk with a better lifestyle; diet and exercise (of both the body and brain) are clearly important, but they won't work miracles. We need to wait for the outcome of the current research into astrocytes and iPSCs to find out if the human brain can be repaired after devastating attacks from within or without. Somehow I doubt that Homo superior is waiting round the corner, ready to take over the world from us unenhanced humans…

Friday, 11 August 2017

From steampunk to Star Trek: the interwoven strands between science, technology and consumer design

With Raspberry Pi computers having sold over eleven million units by the end of last year, consumer interest in older technology appears to have become big business. Even such decidedly old-school devices as crystal radio kits are selling well, whilst replicas of vintage telescopes are proof that not everyone has a desire for the cutting-edge. I'm not sure why this is so, but since even instant Polaroid-type cameras are now available again - albeit with a cute, toy-like styling - perhaps manufacturers are just capitalising on a widespread desire to appear slightly out of the ordinary. Even so, such products are far closer to the mainstream than left field: instant-developing cameras for example now reach worldwide sales of over five million per year. That's hardly a niche market!

Polaroid cameras aside, could it be the desire for a less minimal aesthetic that is driving such purchases? Older technology, especially if it is pre-integrated circuit, has a decidedly quaint look to it, sometimes with textures - and smells - to match. As an aside, it's interesting that whilst on the one hand current miniaturisation has reduced energy consumption for many smaller pieces of technology from the Frankenstein laboratory appearance of valve-based computing and room-sized mainframes to the smart watch etal, the giant scale of cutting-edge technology projects require immense amounts of energy, with nuclear fusion reactors presumably having overtaken the previous perennial favourite example of space rockets when it comes to power usage.

The interface between sci-tech aesthetics and non-scientific design is a complicated one: it used to be the case that consumer or amateur appliances were scaled-down versions of professional devices, or could even be home-made, for example telescopes or crystal radios. Nowadays there is a massive difference between the equipment in high-tech laboratories and the average home; even consumer-level 3D printers won't be able to reproduce gravity wave detectors or CRISPR-Cas9 genome editing tools any time soon.

The current trend in favour - or at least acknowledgement - of sustainable development, is helping to nullify the pervasive Victorian notion that bigger, faster, noisier (and smellier) is equated with progress. It's therefore interesting to consider the interaction of scientific ideas and instruments, new technology and consumerism over the past century or so. To my mind, there appear to be five main phases since the late Victorian period:
  1. Imperial steam
  2. Streamlining and speed
  3. The Atomic Age
  4. Minimalism and information technology
  5. Virtual light

1) Imperial steam

In the period from the late Nineteenth Century's first generation of professional scientists up to the First World War, there appears to have been an untrammelled optimism for all things technological. Brass, iron, wood and leather devices - frequently steam-powered - created an aesthetic that seemingly without effort has an aura of romance to modern eyes.

Although today's steampunk/alternative history movement is indebted to later authors, especially Michael Moorcock, as much as it is to Jules Verne and H.G. Wells, the latter pair are only the two most famous of a whole legion of late Victorian and Edwardian writers who extolled - and occasionally agonised over - the wonders of the machine age.

I must confess I much prefer steam engines to electric or diesel locomotives, despite the noise, smuts and burning of fossil fuels. Although the pistons and connecting rods of these locomotives might be the epitome of the design from this phase, it should be remembered that it was not unknown for Victorian engineers to add fluted columns and cornucopia reliefs to their cast iron and brass machinery, echoes of a pre-industrial past. An attempt was being made, however crude, to tie together the might of steam power to the Classical civilisations that failed to go beyond the aeolipile toy turbine and the Antikythera mechanism.

2) Streamlining and speed

From around 1910, the fine arts and then decorative arts developed new styles obsessed with mechanical movement, especially speed. The dynamic work of the Futurists led the way, depicting the increasing pace of life in an age when humans and machines were starting to interact ever more frequently. The development of heavier-than-air flight even led to a group of 'aeropainters' whose work stemmed from their experience of flying.

Although scientific devices still had some of the Rube Goldberg/Heath Robinson appearance of their Nineteenth Century forebears, both consumer goods and vehicles picked up the concept of streamlining to suggest a sophisticated, future-orientated design. Items such as radios and toasters utilised early plastics, stainless steel and chrome to imply a higher level of technology than their interiors actually contained. This is in contrast to land, sea and aerial craft, whereby the practical benefits of streamlining happily coincided with an attractive aesthetic, leading to design classics such as the Supermarine seaplanes (forerunners of the Spitfire) and the world speed record-holding A4 Pacific Class steam locomotives.

3) The Atomic Age

By the 1950s practically anything that could be streamlined was, whether buildings that looked like ocean liners or cars with rocket-like tailfins and dashboards fit for a Dan Dare spaceship. However, a new aesthetic was gaining popularity in the wake of the development of atomic weapons. It seems to have been an ironic move that somewhere between the optimism of an era of exciting new domestic gadgets and the potential for nuclear Armageddon, the Bohr (classical physics) model of the atom itself gained a key place in post-war design.

Combined with rockets and space the imagery could readily be termed 'space cadet', but it wasn't the only area of science to influence wider society. Biological research was undergoing a resurgence, which may explain why stylised x-ray forms, amoebas and bodily organs become ubiquitous on textiles, furnishings, and fashion. Lighting fixtures were a standout example of items utilising designs based on the molecular models used in research laboratories (which famously gave Crick and Watson the edge in winning the race to understand the structure of DNA).

Monumental architecture also sought to represent the world of molecules on a giant scale, culminating in the 102 metre-high Atomium built in Brussels for the 1958 World's Fair. It could be said that never before had science- and technological-inspired imagery been so pervasive in non-STEM arenas.

4) Minimalism and information technology

From the early 1970s the bright, optimistic designs of the previous quarter century were gradually replaced by the cool, monochromatic sophistication of minimalism. Less is more became the ethos, with miniaturisation increasing as solid-state electronics and then integrated circuits became available. A plethora of artificial materials, especially plastics, meant that forms and textures could be incredibly varied if refined.

Perhaps a combination of economic recession, mistrust of authority (including science and a military-led technocracy) and a burgeoning awareness of environmental issues led to the replacement of exuberant colour with muted, natural tones and basic if self-possessed geometries. Consumers could now buy microcomputers and video games consoles; what had previously only existed in high-tech labs or science fiction became commonplace in the household. Sci-fi media began a complex two-way interaction with cutting-edge science; it's amazing to consider that only two decades separated the iPad from its fictional Star Trek: The Next Generation predecessor, the PADD.

5) Virtual light

With ultra high-energy experiments such as nuclear fusion reactors and the ubiquity of digital devices and content, today's science-influenced designs aim to be simulacra of their professional big brothers. As stated earlier, although consumer technology is farther removed from mega-budget science apparatus than ever, the former's emphasis on virtual interfaces is part of a feedback loop between the two widely differing scales.

The blue and green glowing lights of everything from futuristic engines to computer holographic interfaces in many Hollywood blockbusters are representations of both the actual awesome power required by the likes of the Large Hadron Collider and as an analogy for the visually-unspectacular real-life lasers and quantum teleportation, the ultimate fusion (sorry, couldn't resist that one) being the use of the real National Ignition Facility target chamber as the engine core of the USS Enterprise in Star Trek: Into Darkness.

Clearly, this post-industrial/information age aesthetic is likely to be with us for some time to come, as consumer-level devices emulate the cool brilliance of professional STEM equipment; the outer casing is often simple yet elegant, aiming not to distract from the bright glowing pixels that take up so much of our time. Let's hope this seduction by the digital world can be moderated by a desire to keep the natural, material world working.

Wednesday, 18 June 2014

Opening hearts and minds: Cosmos old, new, borrowed and blue

As a young and impressionable teenager I recall staying up once a week after the adults in my home had gone to bed in order to watch an amazing piece of television: Cosmos, a magical journey in thirteen episodes that resonated deeply with my own personal hopes and dreams. Now that Cosmos: A Spacetime Odyssey has completed its first run it's worth comparing and contrasting the two series, serving as they do as reflections of the society and culture that created them.

Both versions were launched with aggressive marketing campaigns: I was surprised to see even here in Auckland a giant billboard promoted the series in as hyped a media operation as any Hollywood blockbuster. But then I assume the broadcasters have to get returns for their massive investments (dare I call it a leap of faith?) Both the original series and the updated / reimagined / homage (delete as appropriate) version have greater scope, locales and no doubt budgets than most science documentary series, a few CGI dinosaur and David Attenborough-narrated natural history shows excepted.

The aim of the two series is clearly identical and can be summed up via a phrase from Carl Sagan's introduction to the first version's tie-in book: "to engage hearts as well as minds". In addition, both the 1980 and 2014 versions are dedicated to the proposition that "the public are far more intelligent than generally given credit for". However, with the rise of religious fundamentalist opposition to science in general and evolution in particular, there were times when the new version obviously played it safer than the earlier series, such as swapping Japanese crabs for much more familiar species, dogs. As before, artificial selection was used as a lead-in to natural selection, exactly as per Darwin's On the Origin of Species.

Another example to put the unconverted at their ease in the Neil deGrasse Tyson series is the use of devices that rely on the enormous popularity of science fiction movies and television shows today. Even the title sequence provokes some déjà vu, reminding me of Star Trek: Voyager. But then one of the directors and executive producers is former Star Trek writer-producer Brannon Braga, so perhaps that's only to be expected. In addition, the temple-like interior of Sagan's ship of the imagination has been replaced by something far more reminiscent of the Enterprise bridge. I suppose the intention is to put the scientifically illiterate at their ease before broaching unfamiliar territory.

Talking of science fiction, an echo of the space 'ballet' in 2001: A Space Odyssey can be seen with the use of Ravel's Bolero for the beautiful sequence in episode 11 of the new series. Unfortunately, the commissioned music in the Tyson programme fails to live up to the brilliant selections of classical, contemporary and folk music used in the Sagan version, which were presumably inspired by the creation of the Voyager Golden Record (a truly 1970's project if ever there was one) and with which it shares some of the same material. At times Alan Silvestri's 2014 score is too reminiscent of his Contact soundtrack, which wouldn't in itself be too distracting, but at its most choral/orchestral is too lush and distinctly overblown. Having said that, the synthesizer cues are more successful, if a bit too similar to some of the specially written material Vangelis composed for the 1986 revised version.

I also had mixed feelings about the animated sequences, the graphic novel approach for the characters seemingly at odds with the far more realistic backgrounds. Chosen primarily for budgetary reasons over live-action sequences, the combination of overstated music, dramatic lighting and quirks-and-all characterisation heavy on the funny voices meant that the stories tended to get a bit lost in the schmaltz-fest. I know we are far more blasé about special effects now - the Alexandrian library sequence in the original series blew me away at the time - but I'd rather have real actors green-screened onto digimattes than all this pseudo Dark Knight imagery.

Back to the content, hurrah! For readers of the (distinctly unpleasant) Keay Davidson biography, Carl Sagan, champion of Hypatia, has become known as the feminist ally who never did any housework. He has been left distinctly in the shade by the much greater attention paid to women scientists in the new series. Presumably Ann Druyan is responsible for much of this, although there are some lost opportunities: Caroline Herschel, most obviously; and Rachel Carson wouldn't have gone amiss, considering how much attention was given to climate change. As with the original series, the new version made a fair stab at non-Western contributions to science, including Ibn al-Haytham and Mo Tzu in the new series.

As to what could have been included in the Tyson version, it would have been good to emphasise the ups and downs trial-and-error nature of scientific discovery. After all, Sagan gave a fair amount of time to astronomer, astrologer and mystic Johannes Kepler, including his failed hypothesis linking planetary orbits to the five Platonic solids. Showing such failings is good for several reasons: it makes scientists seem as human as everyone else and also helps define the scientific method, not just the results. Note: if anyone mentions that Kepler was too mystical when compared to the likes of Galileo, point them to any modern biography of Isaac Newton...

Neil deGrasse Tyson is an excellent successor to Sagan but at times he seems to almost be imploring the audience to understand. But whereas Sagan only contended with good old fashioned astrology, his successor faces an audience of young Earth creationists, alien abductees, homeopaths and moon landing hoax theorists, so perhaps his less relaxed attitude is only to be expected. Despite the circa 1800 exoplanets that have now (indirectly) been detected, the new series failed to mention this crucial update to the Drake equation. Indeed, SETI played a distinctly backseat role to the messages of climate degradation and how large corporations have denied scientific evidence if it is at odds with profit margins.

All in all I have mixed feelings about the new series. For a central subject, the astronomy was at times second fiddle to the 'poor boy fighting adversity' theme of Faraday, Fraunhofer, etal. Not that there's anything bad about the material per se, but I think a lot more could have been made of the exciting discoveries of the intervening years: dark matter and dark energy, geological activity on various moons other than Io, even exoplanets.

The original 1980 series was a pivotal moment of my childhood and no doubt inspired countless numbers to become scientists (British physicist and presenter Brian Cox, for one), or at least like me, to dabble amateurishly in the great enterprise in our spare time. I'm pleased to add that I'm one degree of separation from Carl Sagan, thanks to having worked with a cameraman from the original series. But we can never go back. Perhaps if we're lucky, Tyson, Druyan and company will team up for some other inspiring projects in the future. Goodness knows we could do with them!

Tuesday, 18 June 2013

Deserving dollars: should mega budget science be funded in an age of austerity?

With the UK narrowly avoiding France's fate of a triple dip recession, I thought I would bite the bullet and examine some of the economics of current science. In a time when numerous nations are feeling severe effects due to the downturn, it is ironic that there are a multitude of science projects with budgets larger than the GDP of some smaller nations. So who funds these ventures and are they value for money, or even worthwhile, in these straitened times? Here are a few examples of current and upcoming projects, with the lesser known the project the more the information supplied:

National Ignition Facility

The world's most powerful laser was designed with a single goal: to generate net energy from nuclear fusion by creating temperatures and pressures similar to those in the cores of stars. However, to state that the NIF has not lived up to expectation would be something of an understatement. According to even the most conservative sources, the original budget of the Lawrence Livermore National Laboratory project has at the very least doubled if not quadrupled to over US$4 billion, whilst the scheduled operational date came five years overdue.

I first learned of the project some years ago thanks to a friend who knew one of the scientists involved. The vital statistics are astonishing, both for the scale of the facility and the energies involved. But it seems that there may be underlying problems with the technology. Over-reliance on computer simulations and denial of deleterious experimental results on precursor projects, as well as the vested interests of project staffers and the over-confident potential for military advances, have all been suggested as causes for what history may conclude as a white elephant. So perhaps if you are looking for an archetypal example of how non-scientific factors have crippled research, this may well be it.

Unlike all the other projects discussed, the National Ignition Facility is solely funded by one nation, the USA. Of course, it could be argued that four billion dollars is a bargain if the project succeeded, and that it is today's time-precious society that needs to learn patience in order to appreciate the long-term timescales required to overcome the immense technological challenges. Nuclear fusion would presumably solve many of todays - and the foreseeable futures - energy requirements whilst being rather more environmentally friendly than either fossil fuels or fission reactors. The potential rewards are plain for all to see.

However, the problems are deep-rooted, leading to arguments against the development of laser-based fusion per se. Alternative fusion projects such as the Joint European Torus and the $20 billion ITER - see an earlier post on nuclear fusion research for details - use longer-established methods. My verdict in a nutshell: the science was possibly unsound from the start and the money would be better spent elsewhere. Meanwhile, perhaps the facility could get back a small portion of its funding if Star Trek movies continue to hire the NIF as a filming location!

The International Space Station

I remember the late Carl Sagan arguing that the only benefit of the ISS that couldn’t be achieved via cheaper projects such as – during the Space Shuttle era - the European Space Agency’s Spacelab, was research into the deleterious effects on health of long-duration spaceflight. So at $2 billion per year to run is it worthwhile, or but another example of a fundamentally flawed project? After all, as it is the station includes such non-scientific facets as the ultimate tourist destination for multi-millionaires!

Sometimes referred to as a lifeline for American and Russian aerospace industries (or even a way to prevent disaffected scientists in the latter from working for rogue states), I have been unable to offer a persuasive argument as to why the money would not have been better spent elsewhere. It is true that there has been investigation into vaccines for salmonella and MRSA, but after twelve years of permanent crewing on board the station, just how value for money has this research been? After all, similar studies were carried out on Space Shuttle flights in previous few decades, suggesting that the ISS was not vital to these programmes. The Astronomer Royal Lord Martin Rees has described as it as a 'turkey in the sky', siphoning funds that could have been spent on a plethora of unmanned missions such as interplanetary probes. But as we should be aware, it usually isn't a case that money not spent on one project would automatically become available for projects elsewhere.

On a positive scientific note, the station has played host to the $2 billion Alpha Magnetic Spectrometer - a key contender in the search for dark matter - which would presumably have difficulty finding a long-duration orbital platform elsewhere. But then this is hardly likely to excite those who want immediate, practical benefits from such huge expenditure.

The ISS has no doubt performed well as a test bed for examining the deterioration of the human body due to living in space, if anything seriously weakening the argument for a manned Mars mission in the near future. Perhaps one other area in which the station has excelled has been that of a focal point for promoting science to the public, but surely those who follow in Sagan’s footsteps - the U.K.'s Brian Cox for one - can front television series with a similar goal for the tiniest fraction of the cost?

The Large Hadron Collider

An amazing public-relations success story, considering how far removed the science and technology are from everyday mundanity, the world's largest particle accelerator requires $1 billion per year to operate on top of a construction budget of over $6 billion. With a staff of over 10,000 the facility is currently in the midst of a two-year upgrade, giving plenty of time for its international research community to analyse the results. After all, the Higgs Boson A.K.A. 'God particle' has been found…probably.

So if the results are confirmed, what next? Apparently, the facility can be re-engineered for a wide variety of purposes, varying from immediately pragmatic biomedical research on cancer and radiation exposure to the long-term search for dark matter. This combination of practical benefits with extended fundamental science appears to be as good a compromise as any compared to similar-scale projects. Whether similar research could be carried out by more specialised projects is unknown. Does anyone know?

As for the future of mega-budget schemes, there are various projects in development extending into the next decade. The Southern Hemisphere is playing host to two large international collaborations: the Square Kilometre Array is due to begin construction in eleven nations - excluding its UK headquarters - in 2016, but it will be around eight years before this $2 billion radio telescope array is fully operational. Meanwhile the equally unimaginatively-named European Extremely Large Telescope is planned for a site in Chile, with an even longer construction period and a price tag approaching $1.5 billion. Both projects are being designed for a variety of purposes, from dark matter investigation to searching for small (i.e. Earth-sized) extra-solar planets with biologically-modified atmospheres.

At this point it is pertinent to ask do extremely ambitious science projects have to come with equally impressive price tags? Personally I believe that with a bit more ingenuity a lot of useful research can be undertaken on far smaller budgets. Public participation in distributed computing projects such as Folding@home and Seti@home, in which raw data is processed by home computers, is about as modest an approach as feasible for such large amounts of information.

An example of a long-term project on a comparatively small budget is the US-based Earthscope programme, which collects and analyses data including eminently practical research into seismic detection. With a construction cost of about $200 million and annual budget around a mere $125 million this seems to be a relative bargain for a project that combines wide-scale, theoretical targets with short-term, pragmatic gains. But talking of practical goals, there are other scientific disciplines crying out for a large increase in funding. Will the explosive demise of a meteor above the Russian city of Chelyabinsk back in February act as a wake-up call for more research into locating and deflecting Earth-crossing asteroids and comets? After all, the 2014 NASA budget for asteroid detection projects is barely over the hundred million dollar mark!

I will admit to some unique advantages to enormous projects, such as the bringing together of researchers from the funding nations that may lead to fruitful collaboration. This is presumably due to the sheer number of scientists gathered together for long periods, as opposed to spending just a few days at an international conference or seminar, for instance. Even so, I cannot help but feel that the money for many of the largest scale projects could be bettered used elsewhere, solving some of the immediate problems facing our species and ecosystem.

Unfortunately, the countries involved offer their populations little in the way of voice as to how public money is spent on research. But then considering the appalling state of science education in so many nations, as well as the short shrift that popular culture usually gives to the discipline, perhaps it isn’t so surprising after all. If we want to make mega-budget projects more accountable, we will need to make fundamental changes to the status of science in society. Without increased understanding of the research involved, governments are unlikely to grant us choice.

Wednesday, 27 February 2013

An index of possibilities: is science prognostication today worthwhile or just foolish?

A few evenings ago I saw the International Space Station. It was dusk, and walking home with the family we were looking at Jupiter when a moving bright light almost directly overhead got our attention. Too high for an aircraft, too large for a satellite, a quick check on the Web when we got home confirmed it was the ISS. 370 kilometres above our heads, a one hundred metre long, permanently crewed construction confirmed everything I read in my childhood: we had become a space-borne species. But if so few of the other scientific and technological advances I was supposed to be enjoying in adulthood have come true, has the literature of science prediction in these areas also changed markedly?

It is common to hear nowadays that science is viewed as just one of many equally valid methods of describing reality. So whilst on the one hand most homes in the developed world contain a myriad of up-to-date high technology, many of the users of these items haven't got the faintest idea how they work. Sadly, neither do they particularly have any interest in finding out. It's a scary thought that more and more of the key devices we rely on every day are designed and manufactured by a tiny percentage of specialists in the know; we are forever increasing the ease with which our civilisation could be knocked back to the steam age - if not the stone age.

Since products of such advanced technology are now familiar in the domestic environment and not just in the laboratory, why are there seemingly fewer examples of popular literature praising the ever-improving levels of knowledge and application compared to Arthur C. Clarke's 1962 prophetic classic Profiles of the Future and its less critical imitators that so caught my attention as a child? Is it that the level of familiarity has led to the non-scientist failing to find much interest or inspiration in what is now such an integrated aspect of our lives? With scientific advance today frequently just equated with cutting-edge consumerism we are committing an enormous error, downplaying far more interesting and important aspects of the discipline whilst cutting ourselves off from the very processes by which we can gain genuine knowledge.

Therefore it looks as if there's somewhat of an irony: non-scientists either disregard scientific prognostication as non-practical idealism ("just give me the new iPad, please") and/or consider themselves much more tech savvy than the previous generation (not an unfair observations, if for obvious reasons - my pre-teen children can work with our 4Gb laptop whilst my first computer had a 48Kb RAM). Of course it's not all doom and gloom. Although such as landmark experiments as the New Horizons mission to Pluto has gone largely unnoticed, at least by anyone I know, the Large Hadron Collider (LHC) and Mars Curiosity rover receive regular attention in popular media.

Perhaps the most regularly-occurring theme in science news articles over the past decade or so has been climate change, but with the various factions and exposé stories confusing the public on an already extremely complex issue, could it be that many people are turning their back on reading postulated technological advances as (a) technology may have greatly contributed to global warming; and (b) they don't want to consider a future that could be extremely bleak unless we ameliorate or solve the problem? The Astronomer Royal and former President of the Royal Society Martin Rees is one of many authors to offer a profoundly pessimistic view of mankind's future. His 2003 book Our Final Hour suggests that either by accident or design, at some point before AD2100 we are likely to initiate a technological catastrophe here on the Earth, and the only way to guarantee our species' survival is to establish colonies elsewhere as soon as possible.

But there are plenty of futurists with the opposite viewpoint to Rees and like-minded authors, including the grandly-titled World Future Society, whose annual Outlook reports are written with the aim of inspiring action towards improving our prospects. Most importantly, by including socio-economic aspects they may fare better than Arthur C. Clarke and his generation, whose space cadet optimism now seems hopelessly naïve.

One way near-future extrapolation may increase accuracy is for specialists to concentrate in their area of expertise. To this end, many scientists and popularisers have concentrated on trendy topics such as nanotechnology, with Ray Kurzweil perhaps the best known example. This isn't to say that there aren't still some generalist techno-prophets still around, but Michio Kaku's work along these lines has proved very mixed as to quality whilst the BBC Futures website is curiously old school, with plenty of articles on macho projects (e.g. military and transport hardware) that are mostly still in the CAD program and will probably remain that way for many years to come.

With so many factors influencing which science and technology projects get pursued, it seems worthwhile to consider whether even a little knowledge of current states and developments might be as useful as in-depth scientific knowledge when it comes to accurate prognostication, with luck instead playing the primary role. One of my favourite examples of art-inspired science is the iPad, released to an eager public in 2010 some twenty-three years after the fictional PADD was first shown on Star Trek: The Next Generation (TNG) - although ironically the latter is closer in size to non-Apple tablets. In an equally interesting reverse of this, there is now a US$10 million prize on offer for the development of a hand-held Wi-Fi health monitoring and diagnosis device along the lines of the Star Trek tricorder. No doubt Gene Roddenberry would have been pleased that his optimistic ideas are being implemented so rapidly; but then even NASA have at times hired his TNG graphic designer!

I'll admit that even I have made my own modest if inadvertent contribution to science prediction. In an April Fools' post in 2010 I light-heartedly suggested that perhaps sauropod dinosaurs could have used methane emissions as a form of self-defence. Well, not quite, but a British study in the May 2012 edition of Current Biology hypothesises that the climate of the period could have been significantly affected by dino-farts. As they say, truth is always stranger than fiction…

Friday, 1 April 2011

Moonage daydreams: lunacy, conspiracy and the Apollo moon landings

It's astonishing to think that in less than two weeks' time it will be half a century since Yuri Gargarin slipped the surly bonds of Earth in Vostock 1. Although a generation has grown up since the end of the Cold War, any study of early astronautics cannot exclude a major dollop of politics. This is particularly true of the Apollo moon landing programme and President Kennedy's commitment to achieve this goal by 1970. Now as much a part of history as a fading memory, a small but significant number of theorists doubt the veracity of the missions. But are they just the same crackpots/misguided types (delete as required) who claim to have been abducted by aliens, or is there anything more concrete to go on?

A wide range of conspiracy stories has been circulating since rocket engine company employee the (now late) Bill Kaysing self-published his 1974 opus We Never Went to the Moon: America's Thirty Billion Dollar Swindle. Of course conspiracy was very much in the American psyche during that period: the Watergate affair had occurred 6 months prior to the final moon landing mission in December 1972 whilst President Nixon's resignation followed the release of the crucial audio tape evidence in August 1974. In a sense, the world was ready for Kaysing's theories, but can an impartial assessment show how accurate they are? Much of his thesis can be dismissed with a little application of the scientific method: the alleged problems on photographs and movie footage such as disappearing cross-hairs or incorrect shadows and lighting are easy to resolve. In another vein, the waving of the US flag on the lunar surface, attributed to wind in an Earth-based moon simulator, is just foolish. Why would such amateur mistakes occur if an elaborate cover-up were true?

However, new evidence recently made public from former Soviet archives hints that the conspiracy theorists may be on to something after all. Telemetry tapes from the USSR's land- and ship-based deep space network suggest that there was an additional signal hidden, via frequency division multiplexing, underneath transmissions to the Apollo craft. This implies that what actually went to the moon were pairs of empty spacecraft: a robot version of the lander (or LM); and a command module (CSM) with an automated radio system. This latter set-up would isolate the hidden transmissions received from Earthbound astronauts and beam them back to fool the world into thinking the spacecraft was manned. The crew themselves would divide their time between Apollo mock-ups built inside a weightless training aircraft or 'vomit comet' (ironically also the technique used in the 1995 film Apollo 13) and a recreation of the lunar surface in the infamous Area 51 complex in Nevada. Of course the associated activities of sending robot sample-return missions to bring back massive quantities of moon rock (the same method used by the Soviet Luna missions from 1970 onwards) would presumably have eaten so deeply into NASA's budget as to be responsible for the cancellation of the last three moon-landing missions (or fake missions, as perhaps we should refer to them).

The obvious question is why go to all this length when the programme's fantastic achievements – the rockets, spacecraft, and their entire cutting-edge infrastructure - had already been built? Again, the USSR can add something to the picture. Fully six months before the Apollo 11 flight, the Soviet Union officially announced it was pulling out of the moon race and would not even attempt a manned flight to the moon. Then the month after Apollo 11's splashdown, the Soviets launched Zond 7, an unmanned variant of their Soyuz craft (a design still in use today to ferry crew to the International Space Station), on a circumlunar trajectory. What is interesting is that the craft carried 'special radiation protection'. Had they found a fundamental obstruction to a manned lunar landing mission? Less than one month prior to Apollo 11, when you would have thought NASA would have been completely focussed on that mission (and bearing in mind the massive amount of unpaid overtime required to maintain schedules), the US launched a pigtail monkey called Bonny into orbit aboard Biosat 3. This almost unknown mission was terminated more than twenty days early, with Bonny dying 8 hours after landing. What was so urgent it needed testing at this crucial time? In a word: radiation.

The Van Allen Belt consists of two tori (basically, doughnuts) of high-energy charged particles trapped by the Earth's magnetic field. After its existence was confirmed by the USA's first satellite, Explorer 1, continuous observation proved that the radiation intensity varies over time as well as space. Unfortunately, 1969-1970 was a peak period in the cycle, in addition to which it was accidentally augmented by artificially-induced radiation. In 1962 the USA detonated a 1.4 megaton atomic weapon at an altitude of 400 kilometres. Although by no means the largest bomb used during four years of high-altitude testing, Operation Starfish Prime generated far more radiation than any similar US or USSR experiment, quickly crippling a number of satellites, including some belonging to the Soviets.

The theory holds that this additional radiation belt would have had a profound effect on manned spacecraft travelling beyond low Earth orbit. An additional whammy would be the danger of deep-space radiation once away from the protection of the geomagnetic field. The BBC's 2004 docudrama series Space Odyssey: Voyage to the Planets showed this quite nicely when the interplanetary Pegasus mission lost its doctor to cosmic radiation. There is also speculation that the impact of cosmic rays on the lunar surface generates a spray of secondary particles that would prove hazardous to astronauts. Although it's not clear if the Russians were sending animals into space during the late 1960s as per the Biosat series, Bill Kaysing claimed he had been given access to a Soviet study that recommended blanketing lunar surface astronauts in over a metre of lead!

The Apollo missions of course utilised what was then cutting edge technology, but even so the payload capacity of the Saturn V rocket did not allow for spacecraft with anything but the lightest of construction techniques. Indeed, the Apollo lunar module had outer coverings of Mylar-aluminium alloy – a substance that appears to be a high-tech version of baking foil. In this instance it seems rather apt, in the sense that it may well have lead to self-basting astronauts, had they actually been on board. In all seriousness, the heaviest of the fuelled-up CSM-LM configurations was around 40 tonnes (for Apollo 17), only five tonnes short of the maximum lunar transfer trajectory capacity. Since it took an 111-metre tall Saturn V to launch these craft, it is clear that lead shielding wasn't really an option.

Some conspiracy theorists have argued that Stanley Kubrick, coming directly from four years of making 2001: A Space Odyssey, was involved in the hoax filming, but this seems rather ridiculous (although another irony is that 2010: Odyssey Two director Peter Hyams had earlier made the Mars mission conspiracy film Capricorn One, the film's hardware consisting of Apollo craft...) A far more plausible candidate to my mind is Gene Roddenberry, the originator of Star Trek. The Apollo 8 circumlunar flight over Christmas 1968 (including a reading from Genesis, no less), the 'happy' (from a ratings point of view) accident of Apollo 13, even the use of America's first rocket-launched astronaut Alan Shepard as commander of Apollo 14, hint back to the homely yet patriotic heroics of Kirk and co. As for the photographic effects crew, my money would be on one 2001's effects supervisors, namely the engineering genius Douglas Trumbull. Today even amateurs like myself can attempt to replicate their brilliant work: here's my take of Armstrong and Aldrin, done many moons ago, courtesy of Messer Airfix and Photoshop (shame you can't see the cross-hairs at this size):

Apollo lunar lander
As for how all those involved have managed to maintain silence over the decades, Neil Armstrong's publicity shyness is about the only example I can think of that bolsters the argument. Except there is also the curious case of Britain's own "pretty far out" David Bowie, who somehow seems to have been in the know. It sounds bizarre, but if you examine his oeuvre from Space Oddity onwards ("your circuits dead, there's something wrong") to the film The Man Who Fell to Earth (complete with a cameo from Apollo 13 commander James Lovell as himself) you begin to find a subliminal thematic thread. For me, these culminate in the 1971 song Moonage Daydream, with the deeply conspiratorial lyrics "Keep your mouth shut, you're squawking like a pink monkey bird...Don't fake it baby, lay the real thing on me..."

Couldn't have put it any better myself!

Tuesday, 29 June 2010

How to look smart: textiles with intelligence

Although cybernetics, the truly personal interfacing of man and machine, has long been discussed in both fact and fiction, far less attention has been paid to futuristic clothing, Star Fleet velour and shiny foil suits aside. The past decade has seen a proliferation of technologies aimed at developing clothing that does more than just provide comfort and display. The creation of smart textiles that react to both external environmental factors and the wearer's body promises a wide range of uses, from health and medicine, via sports, to ultra-portable information technology.

In 2008 the smart fabrics industry in the European market alone was estimated to be worth over three hundred million Euros. To this end, the European Union created a research cluster with the quasi clothes-related if slightly tortuous acronym SFIT, or Smart Fabrics, Interactive Textile. With a growth rate forecast at 20% per year the sector shows great promise - and how much of it will revolve around consumerist infotainment gadgetry is anyone's guess. As an example of what is already available, the British company Peratech produces a wide range of electro-conductive smart fabrics under the Elektex banner. MP3 players and BlueTooth devices are amongst those incorporated into their clothing, and I assume it won't be too long for some form of television or viewing capability is built in, perhaps utilising sunglasses or head-up display technology.

The increasing miniaturisation of electronics and materials in general will undoubtedly lead to clothing and accessories constructed of elements arranged at a nano level. Recent developments in computer interfacing, such as the roll-up keyboard, suggest it may not be too long before people are wearing items more intelligent than they are (although in many cases that wouldn't be too difficult!) Much has been written about technology at the nano scale, including research into creating nano-bots that can be injected into the human body to destroy infections or fatty deposits. At a rather less invasive level, it is easy to see that smart fabrics could be developed for the slow release of pharmaceuticals or to monitor heart rate, respiration etc. The New Zealand company Zephyr have already developed two products: the kinky-sounding bio-harness and the shoe pod, both containing sensors woven into the textile. When combined with data storage components the products can record physiological information. No doubt the military are keeping as keen an eye on these developments as much as professional sports concerns.

Speaking of the armed forces, in February this year the UK's Ministry of Defence awarded a research grant to the British firm Intelligent Textiles Limited with the aim of developing fabrics that could back up if not replace military field equipment such as radios. Combined with innovations such as the aforementioned roll-up keyboard it seems strange how late has attention been paid to these developments. Clearly, there are benefits for many areas, although whether companies will persuade their executives to include such items in their travel luggage may appear a step too far in the work-life balance threshold.

Back on the health front, the simplest use of smart materials may be fabrics able to aid allergy sufferers, or at least warn them of impending doom (I would dearly love a built-in pollen detector!) Research is also being carried out into fabrics that change colour if they reach a pre-set level of ultraviolet radiation exposure within a time limit; clothing with this non-permanent photo chromic technology might prove to be of immense value to the Australasian market, with the southern ozone hole predicted not to heal for at least half a century.

One area you might expect to see high-tech developments, that of astronaut clothing, has received relatively little public attention apart from EVA (i.e. spacewalk) suits. In the 1970s the Soviet Union developed the elasticated Penguin suit to help cosmonauts exercise their otherwise wasting muscles on long-duration flights. A more high-tech approach is now being developed since the European Space Agency engaged the Danish firm Ohmatex last year to design and manufacture a 'smart sock' to monitor muscle activity via built-in sensors.

Another European venture is the international Biotex project, which aims to develop fabrics with built-in biosensors that can analyse the pH levels and mineral balance of the wearer. One civilian use would be analysis of energy expenditure, extremely useful for those on diets - as in, yes, you can have another chocolate biscuit, you've used up extra calories today. Indeed, the American NuMetrex range of clothing already has something along these lines, along with heart rate and pulse monitors, although from what I've read they are as yet of more use to healthy people than those with cardio-vascular conditions.

On a slightly more esoteric note, transatlantic research teams involved in the recent 2010 Congress of the Humanities and Social Sciences have developed a concept for interactive clothing that responds to the wearer's emotional as well as physical state. The Wearable Absence project aims to deliver complex, personalised audio-visual content when certain physiological conditions are met. Although early days, this could prove to be incredibly useful technique for therapy on the move.

However, it is not all plain sailing for the smart textiles industry: recent studies have suggested that certain smart materials incorporated into clothing, from the tiny silver particles used in anti-odour socks to more exotic substances such as carbon nanotubes, may pose long term health or environmental risks. There have even been discussions in the European Parliament Environment Committee for a ban on some of these materials as part of a wider interest in their adoption in various types of consumer goods.

But ultimately, smart materials are just too good to be abandoned altogether, even if there is a multitude of teething problems ahead. But once these issues are ironed out (geddit?) many of us will no doubt wonder how we ever managed to live without clothes that could power our personal entertainment and phone devices, supply satNav data, monitor our vital signs, offer emotional support in times of stress, and be of course completely self-ironing.

Technorati Tags: ,

Monday, 24 May 2010

Come fly with me: private industry and future of manned spaceflight

As Major Tim Peake undergoes training as the first British citizen to join the European Space Agency's (ESA) Astronaut Corps, it's an interesting time to consider to what extent manned spaceflight will migrate from the state to private sector over the next decade or two. With the International Space Station (ISS - you can see the acronyms mounting) soon to be without the shuttle fleet, not to mention short of an emergency escape vehicle following on-again/off-again Crew Return Vehicle projects, some form of return to earth vehicle will surely be needed. Back in the 1980s at least one Soviet cosmonaut is supposed to have required a prompt return to Earth following a medical problem, but the ISS crew is too large to squeeze into a single venerable Soyuz ferry. It looks like NASA has managed to resurrect the Orion Crew Exploration Vehicle as a lifeboat, eventually…but in the meantime, will the ISS be forced to look to the private sector?

The current centre of attention as far as private manned spaceflight goes is Richard Branson's Virgin Galactic, with its $200,000 price tag for a suborbital hop in a SpaceShipTwo. The flight plan is nothing new - NASA's first two astronauts did something similar nearly half a century ago - but for a private company to achieve this is, or rather will be, astonishing. Any attempt to compare the development of spaceflight to commercial air travel is a failure: the differences in scale and logistics are too profound to allow any meaningful comparison. The margins for error are that much smaller with spaceflight, and whilst the cost of astronaut training is considerable, the cost of a space vehicle that much more. Unfortunately, and ironically, the success of science fiction has led to a widespread ignorance concerning the practicalities and dangers facing astronauts. For example, low Earth orbit has the mounting danger of man-made junk and debris, ranging from lost tools to frozen ejected fecal matter, with estimates for 'detectable' objects alone put at 10,000. According to NASA, this constitutes a 'critical level' of debris. One Soyuz mission in the 1980s suffered minor impact damage to a window, although this could have been a micrometeroid rather than man-made. Nonetheless, seeing as Star Trek deflectors aren't yet fitted as standard, at some point someone is presumably going to have start clearing up this mess.

In variance to Western capitalists looking to make commercial achievements in the human spaceflight sector (unlike say the existing success with communications and other unmanned satellites), both China and India are developing state-led programmes. The first Chinese manned spacecraft, a souped-up Soyuz clone, launched in 2003, whilst the Indian Space Research Organisation (ISRO) plans, with Russian aid, to launch its first astronauts circa 2015. Whether politics and national pride will push American and European entrepreneurs to compete is open to question, but it's possible they will sit alongside raw commercialism as a driving force, with science taking a poor fourth place. Then again, President Obama's speeches have contained arguments along just these lines. Following on from the 2004 Commercial Space Launch Amendments Act, NASA instigated several ISS-orientated programmes such as Commercial Orbital Transportation Services (COTS) and Commercial Resupply Services (CRS), the intention being to free NASA from mundane day-to-day operations thus leaving more resources for R&D (research and development, if you weren't sure). Although initially intended to be cargo craft only, the potential for private sector crewed spacecraft, such as the SpaceX Dragon, is seen as the obvious next step. The problem is that some of the potential private contractors have very little experience of space operations. Or indeed, none. For every Boeing or Lockheed Martin there are an awful lot of small companies looking for a piece of orbital pie; if the success rate matches that of earlier attempts, there are going to be a lot of aerospace corporations filing for bankruptcy.

As early as the 1970's private companies attempted to build satellite launchers, such as OTRAG (go on then: Orbital Transport und Raketen AG, if you must know), only to founder due to technological difficulties, funding shortfalls and political pressure. More recent failures include the now defunct Rotary Rocket company's Roton crewed transport, and NASA's dropping of Rocketplane Kistler in 2008, but in these cases the lack of technical success was the primary cause. It would appear the future, at least for the USA, lies in cooperation between state and industry. Whether the latter will gain riches from microgravity research in pharmaceuticals and smart materials remains to be seen; as Carl Sagan once argued, many of the so-called Apollo breakthroughs could have probably been made for far less money than was spent on the moon landing programme. Perhaps a decline in fossil fuels may lead to new exotic energy projects, such as the mining of lunar helium-3, but the global economy may have to be on much more steady footing for anything as epic as this to be considered. Otherwise it's difficult to identify just where a private contractor could be certain of potential returns from manned spaceflight. Perhaps Richard Branson's quick thrills approach may be the best bet for now!

But are there any indicators as to what the near future might hold? SpaceX Dragon and the recently curtailed Orion are both conventional capsule designs. More advanced projects such as the (initially unmanned) Lockheed Venture Star were cancelled due to difficulties with the engine design, perhaps a primary reason for NASA deciding to play it safe with the Constellation programme's Orion and the Altair lunar lander. Speaking of the latter, President Obama's speech earlier this year placed human expeditions to the moon and Mars in the 2025-2030 time bracket, a safe distance from his White House tenure. I seem to recall all US presidents since, and perhaps including, Reagan, have taken a pot-shot at a manned Mars mission (acronym: mmm - speaks for itself, really.) I would take any such timescale with a large pinch of salt. Admittedly, Obama has proposed large budget increases for NASA, guaranteed to generate more than 2,500 jobs in Florida alone. But like many aspects of the Soviet Union's Five Year Plans, is the intention to promote economic growth, the outcome of the projects themselves being on secondary importance? US presidents of the past few decades have not exactly been known for their scientific acumen. Competition between private companies is an ideal way of generating R&D whilst minimising tax payers' investments, but if these corporations don't succeed in establishing a comprehensive level of interaction with NASA there could be trouble afoot. After all, it isn't so many years since a software contractor mixed up imperial with metric units, causing the in-flight loss of the Mars Climate Orbiter.

One potential benefit of increased manned space travel that has been advanced by both the White House as and NASA is the promotion of spaceflight to the general public. With digital entertainment and web empowerment, along with environmental and economic concerns, having taken centre stage in the minds of the post-Apollo generations, an increase in space tourism may have greater impact on the public than the lacklustre coverage of the ISS. If Virgin Galactic can pull off it's enterprise (N.B. that's a joke - the first Spaceship Two will of course be named VSS Enterprise), then perhaps spaceflight will become cool again. This in turn may inspire a new generation of engineers and designers, especially to seek much-needed alternatives to fossil fuels. In an idea reminiscent of Arthur C. Clarke's children's novel Islands in the Sky, last year the brewery company Guinness announced a competition prize of a seat on a Virgin Galactic craft. So although it may be a far cry from the Pan Am Orion spaceplane in 2001: A Space Odyssey, nonetheless it's very much a case of "watch this space..."

Technorati Tag:

Saturday, 19 December 2009

Warp engines offline, Captain: has science fiction become confused with science fact?

The current bickering in Copenhagen seemingly ignores a rather pertinent issue: our skills and experience in reversing climate change are almost exactly zero. Of course we can drastically cut back on fossil fuels, increase energy efficiency and possibly even slow down population growth, but there is little on the technological horizon that can profoundly alter the climate in favour of our species. Yet the implicit view seems to be that if a political solution is found then a practical solution will follow in due course.

So why is it assumed that given enough Government funding, the people in white lab coats can perform miracles of climate engineering? This attitude is symptomatic of an ever-widening gap between the scientific forefront and public perception. Many strands of contemporary science are so detached from everyday life that they inhibit straightforward public assimilation, whilst the ubiquity of electronic consumer goods may be lulling us into a false sense of security regarding our abilities. We are surrounded by 'space age' gadgets and technology from Wii to Wi-Fi that only a generation ago were strictly for James Bond. And with Virgin Galactic seemingly about to usher in a new age of space tourism, becoming an astronaut will be akin to a very expensive form of air travel, though a sub-orbital hop hardly counts as boldly going anywhere.

Another possible cause that doesn't seem to have gained much notice is the influence of science fiction films and television series. With their largely computer-generated visual effects, most Hollywood product effortlessly outshines any real life counterpart. For example, doesn't the International Space Station (ISS) resemble nothing so much as a bunch of tin cans linked by Meccano struts? Yet the ISS is about as good as ultra-expensive high-technology gets, being by far the largest man-made structure ever assembled in orbit. Given a choice between watching ISS crew videos (Thanksgiving dinner with dehydrated turkey, anyone?) and the likes of Bruce Willis saving mankind from doomsday asteroids, most people unmistakably opt for the latter.

Now that the majority of humans live in crowded conurbations far removed from our ancestral peripatetic existence, the desperation for new horizons is obvious. Yet our exploratory avatars such as the Mars rovers hardly qualify as charismatic heroes, hence the great appeal of fictional final frontiers. The complex interplay between reality and fiction is further confused by the new genre of "the science behind…" book. Frequently written by practicing scientists for the likes of Star Trek, The X-Files, Dr Who, etal, the blurring of boundaries can be exemplified by one buyer of The Physics of Star Trek who compared it to A Brief History of Time (although admittedly Stephen Hawking did write the foreword to the former).

Furthermore, the designers of such disparate items as medical monitoring equipment, flip top phones and military aircraft instrumentation have been inspired by Hollywood originals to such an extent that feedback loops now exist, with arcade simulators inspiring real hardware which in turn inspire new games. Articles discussing quantum entanglement experiments seem obliged to draw a comparison with the Star Trek matter transporter, though the transportees are as yet only photons. Theoretical physicist Miguel Alcubierre has even spent time exploring the fundamentals for a faster-than-light 'warp' drive, although it's unlikely to get beyond calculations for some little while. Blue-sky thinking is all very well, but there are plenty of more pressing issues that our finest minds could be working on...

Closer to home, it appears that a lot of the hype surrounding sustainable development is just that. Are we simply in thrall to companies hoping to make a fast buck out of fear, flogging us technologies about as useful as a chocolate teapot? A recent report suggested that the typical British home would gain only minute amounts of electricity from installing solar panels and wind turbines, although the development of spray-on solar cells may drastically improve efficiency in the next few years. But where does this leave us now? Although our species has endured sudden, severe climate changes such as the end of the last glaciation ten thousand years ago, current population density and infrastructure forbid anything as simple as packing our things and moving to higher ground. Cutting back on fossil fuel consumption is clearly necessary, but isn't it equally as important to instigate long-term research programmes in case some of the triggers are due to natural causes such as the Milankovitch cycles? If global temperature increase is inevitable, never mind potential cooling in Western Europe due to a diverted Gulf Stream, then reducing greenhouse gas emissions is merely the tip of the iceberg (sorry, couldn't resist that one).

Anyone who looks back at the grandiose pipe dreams of the 1960's can see that our technological ambitions have profoundly reduced in scope since their idealistic heyday; what we have gained in the micro-scale technologies, we have lost in the giant engineering projects envisaged by likes of Gerard O'Neill, Freeman Dyson, and Arthur C. Clarke. Yet Thunderbirds-style macho engineering is presumably the type we will need to develop if we are heading for a chain reaction of environmental change.

Restructuring an ailing climate will take more than a few decades of recycling and installation of low-voltage light bulbs - we will have to mobilise people and funds on a unique scale if we are not to prove powerless against the mighty engine of Planet Earth. To this end we need to spread the message of our own insignificance, mitigated by research into alleviating the worst-case scenarios: there can be no Hollywood-style quick-fixes to the immense forces ranged against us. No-one could argue that even short-term weather forecasting is an exact science, so discovering whatever trouble the Quantum Weather Butterfly has in store for us will keep earth scientists engaged for many years to come (and there I go again, confusing fiction with reality, doh!)