Sunday, 30 December 2012

Software Samaritans: in praise of science-orientated freeware

In the midst of the gift-giving season it seems an appropriate time to look at a source of presents that keeps on giving, A.K.A. the World Wide Web. In addition to all the scientific information that can be gleaned at comparatively little effort, there is also an immense amount of fantastic freeware that is available to non-professionals. I have found that these can be broken down into three distinctive types of application:
  1. Simulated experiments such as microscope simulators or virtual chemistry laboratories
  2. Distributed computing projects, which are applications that do not require any user effort other than downloading and installation
  3. Aplications with specific purposes to actively aid amateur science practice, such as planetariums
I have to admit to not having any experience with the first category, but examples such as a molecular biology application Gene Designer 2.0, The Virtual Microscope and Virtual (chemistry) Labs - all suitable for school and university students - are astonishing in their ability to extend conventional textbook and lecture-based learning. All I can say is - I wish I had access to such software when I was at school!

I have a bit more experience with distributed computing projects, having been a volunteer on Seti@home - back in its first year (1999-2000). Only the second large-scale project of this type, the grandiose aim is to discover radio signals broadcast by alien civilisations. All the user has to do is download and install the application, which then runs when the computer is idling as per a glorified screensaver. In this particular case, the Seti@home signal-processing software is able to search for extra-terrestrial transmissions that might be only 10% the strength of earlier surveys, using data collected by the giant Arecibo radio telescope. The application has proved to be remarkably successful, having been downloaded to over 3 million personal computers.

But if this project is a bit blue sky for you, there are plenty of others with more down-to-earth objectives. For example, Folding@home and Rosetta@home are fantastic opportunities for all of us non-professionals to help molecular biologists studying protein folding in order to develop cures for diseases such as HIV, Alzheimer's, and Huntington's. So far, the research has generated over a hundred research papers, but the complexity of the subject means there's plenty of room for additional computers to get involved for many years to come.

The third class of software supplies the user with the same sort of functionality as commercially-available applications, but in many cases surpasses them in terms of capabilities and quantity of data. These tend to congregate into a few classes or themes, suitable for usage amongst amateurs of variable capability and commitment.

One popular category is planetarium applications such as Stellarium, which has plenty of features for city-bound (i.e. restricted vision) enthusiasts such as myself. It even includes a night vision mode, red-tinted so as to keep the observer's eye adjusted to the darkness, although unfortunately my telescope camera software doesn't have an equivalent and as I cannot reduce the laptop screen brightness until after I've achieved focus, I'm left stumbling and squinting until my eyes readjust. Stellarium seems reasonably accurate with regards to stars and planets but I've never managed to check if the satellite trajectories confirm to reality. 

For anyone lucky enough to live in a non-light polluted environment  there are more sophisticated free applications, such as Cartes du Ciel-SkyChart which allows you to create printable charts as well as remotely control telescope drives. If you are really an expert at the telescope then C2A (Computer Aided Astronomy) is the bee's knees in planetarium software, even able to simulate natural light pollution during the lunar cycle and allowing you to create your own object catalogues!

As an aside, what gets me with these applications is how they calculate the positioning of celestial objects from any location on Earth, at any time, in any direction, and at varied focal lengths. After all, there is a well-known issue with calculating the gravitational interactions of more than two celestial objects known as the n-body problem. So how do the more sophisticated planetarium applications work out positioning for small objects such as asteroids? I used to have enough issues writing basic gravity and momentum effects in ActionScript when building games in Adobe Flash!  All I can say is that these programmers appear like mathematics geniuses compared to someone of my limited ability.

Processing astrophotography images

Generating Jupiter: from raw planetary camera frame to final processed image

Back to the astronomy freeware. Once I've aligned my telescope courtesy of Stellarium and recorded either video or a sequence of stills using the QHY5v planetary camera (wonder if they'll give me any freebies for plugging their hardware?) I need to intensively process the raw material to bring out the details. For this image processing I use another free application called RegiStax which again astonishes me as to the genius of the programmers, not to mention their generosity. Being a regular user of some extremely complex (and expensive) commercial image editing applications since the late 1990s, I undertook a little research into how such software actually works. All I can say is that unless you are interested in Perlin noise functions (seeded random number generators), stochastic patterns, Gaussian distribution and Smallest Univalue Segment Assimilating Nucleus (SUSAN) algorithms - nice! - you might just want to accept that these applications are built by programmers who, as with the planetarium software builders mentioned above, have advanced mathematics skills beyond the comprehension of most of us.

So in case you weren't aware, the World Wide Web provides far more to the amateur scientist or student than just a virtual encyclopaedia: thanks to the freeware Samaritans you can now do everything from finding the position of millions of astronomical objects to examining electron microscope images of lunar dust. It’s like having Christmas every day of the year!

Sunday, 25 November 2012

Dark skies vs. light pollution: trying to keep in touch with the cosmos

A few minutes after witnessing the recent solar eclipse - reaching an 87% maximum here in Auckland, New Zealand - I was astonished to overhear the account director of an international advertising agency disparagingly state that all the people on the streets he had just seen staring at the sky would probably have been eaten by dinosaurs a few thousand years ago. I was so shocked by his lack of wonder (and this from the representative of an agency that claims to appeal to the heart as much as to head) that I couldn't even bring myself to ask if he was a creationist, considering his evolutionary timescale differed by approximately sixty-five million years from the scientifically accepted one. As much as the impression he gave of being a follower of the Sarah Palin school of history, what really got to me was his lack of wonder: have many first-worlders become so surrounded by electronic gizmos that they are immune to the marvels of nature?

One of the great natural sights anyone can enjoy is the night sky, but with more than 50% of the human race now living in conurbations we are rapidly cutting ourselves off from view that helped inspire our earliest mythologies. Could an argument be made that as our ability to observe the rest of creation declines, so does our ability to awe? Although my home city of Auckland is less light polluted than my last place of residence, London, a brief visit to rural Queensland, Australia earlier in the year reminded me just how much us city dwellers are missing: for example, Mars really is an angry 'Bringer of War' red whilst the Milky Way does seem like a river cutting through the sky. I also recall that once during a holiday in Cyprus I saw an extremely bright, eerie glow radiating from behind hills near our rural villa, only for the full moon to eventually rise as the source of the light.

Although Auckland isn't bad by the standards of some cities - it's dark enough in my back garden for even a half full (First Quarter) moon to cast strong shadows - the view directly west, currently home to interesting sights such as Mars, Mercury and Venus, is pretty much ruined by the stadium lights used in the local shopping centre car park, which remain on until very late. In addition, there is enough general light pollution from buildings and to a lesser extent street lamps that even a modicum of cloud is enough to reflect a diffuse glow and severely impact astronomical 'seeing'.

Crater Copernicus via a Skywatcher 130P telescope
The crater Copernicus, as seen from Auckland via a Skywatcher 130P reflector using a QHY5V camera.

With numerous forms of contamination now known to be causing environmental degradation it's hard to see where support can be garnered for this most poetic of forms of man-made pollution. After all, astronomers are hardly an endangered species and with professionals able to use the likes of the Very Large Telescope in Chile and plans afoot for the European Extremely Large Telescope to be operational by 2022 things are looking up for the discipline (an old astronomical pun, if you weren't aware). But as for us city-bound amateurs, we're stuck with poor viewing conditions thanks to all the artificial lighting, never mind the turbulence caused by heat radiating from asphalt and the like.

Research suggests that the USA alone loses billions of dollars per year on night lighting commercial and corporate premises. So why are shops lit up outside of opening hours: to advertise the company logo and wares for any passing punter, just on the off-chance it triggers a bell in the consumer's head? And what about office buildings? Since movement detectors have been installed in most office tower blocks I've worked in, why do companies still feel the need to have dozens of floors lit up like a Christmas tree? The USA currently imports over 20% of its energy so wouldn't make sense to for the largest consumers to cut down on usage rather than become increasingly beholden to other nations? The lifespan of most fossil fuels deposits is now understood and makes for grim reading, especially with regards to oil. European energy reserves for example are known to be extremely low, so how can non-practical nocturnal lighting be anything other than ridiculous?

And then there are street lights, which in most designs seem to radiate light in all directions. There are models that aim their light where it's needed, i.e. downwards, but the vast majority just aim their beam everywhere. I'm assuming that any street light that channels its light downwards in a tighter beam can utilise lower power bulbs than other styles but even with the obvious eventual power savings I can't see much chance of upgrades en masse; there are an estimated 35 million street lamps in the USA alone, so conversion wouldn't be an overnight process. What about tasking local authorities with switching to more efficient models as and when individual lamps require replacements? You would have thought any opportunity to save energy would be a basic tenet of legislation by now. Or is there a naïve belief that science will come up with a miracle solution in our darkest hour? Personally I'm not sure that nuclear fusion is going to be ready any time soon!

So apart from annoying amateur astronomers there are several strong arguments in favour of reduced nocturnal light pollution. A biological rather than economical one has been suggested by several studies investigating the effects strong nocturnal light levels may have on human health, such as reduced melatonin levels. In addition, various types of wildlife from hatching amphibians to migrating birds are affected by artificial night lighting, and as we are becoming increasingly aware, one small change in the ecosystem can rapidly cause a chain reaction up the food pyramid. As if these problems weren't enough, another issue that seems to have garnered minimal media attention is that artificial lighting at night may break down the nitrate radical NO3, which would otherwise help to neutralise other, smog-contributing, nitrogen oxides. All in all, there seems to be very few areas of concern to humanity that are not affected by nocturnal light pollution. By comparison, the inconvenience to us amateur astronomers seems like small fry!

However, it is not entirely doom and gloom. The International Dark-sky Association (IDA) was formed in 1988 to fight light pollution at a grass roots level and has put together information packs as well as organising the International Dark Sky Places programme. There are to date nearly twenty parks and reserves around the world that have qualified for this status, the majority to be found in Canada and the USA. The largest however is the Aoraki Mackenzie International Dark Sky Reserve on South Island, New Zealand, so I intend to get down there at some point in the next few years...

Another campaign that relies upon public participation is the GLOBE at Night programme, which has collated nocturnal light pollution levels using data supplied by volunteers from 115 countries. It has a family-friendly website with items in up to 14 languages, so for any parents looking to involve their children in an important global experiment, this is the place to go. It even includes instructions on making that essential tool for all night-time observations, a red light, so that you can view documentation without ruining your night vision sensitivity. Incidentally, I know the problems of ruined night vision all too well, since although the superb planetarium freeware I use has a night mode, my telescope camera software does not; I suppose I'll just have to find somewhere that sells sheets of red gel to tape over the laptop screen.

It would appear that the ever-increasing difficulty of viewing at first hand the stars, planets, nebulae and everything else that makes the observable universe is just the tip of the iceberg when it comes to the problems caused by too much artificial lighting at night. But thanks to the likes of the IDA and GLOBE at Night programmes there is now an opportunity for anyone to get involved, both to promote conservation of energy and our fragile ecosystem whilst preserving something of the wonders that previous generations took for granted. As the physicist Brian Greene, author of The Elegant Universe (that's the book with all the tricky stuff about Calabi-Yau spaces) puts it: "I have long thought that anyone who does not...gaze up and see the wonder and glory of a dark night sky filled with countless stars loses a sense of their fundamental connectedness to the universe. And as the astounding vastness of the universe becomes obscured, there is a throwback to a vision of a universe that essentially amounts to earth, or one's country, or state or city. Perspective becomes myopic. But a clear night sky...allows anyone to soar in mind and imagination to the farthest reaches of an enormous universe in which we are but a speck. And there is nothing more exhilarating and humbling than that."

If that's not a call to action, I don’t know what is: come on Brian Cox, please get the ball rolling!