Monday, 10 July 2017

Genius: portraying Albert Einstein as a human being, not a Hollywood stereotype

I recently watched the National Geographic docudrama series Genius, presenting a warts-and-all look at the life and work of Albert Einstein. In these post-truth times in which even a modicum of intellectual thought is often regarded with disdain, it's interesting to see how a scientific icon is portrayed in a high-budget, high-profile series.

A few notable examples excepted, Dr Frankenstein figures still inform much of Hollywood's depiction of STEM practitioners. Inventors are frequently compartmentalised as either patriotic or megalomaniac, often with a love of military hardware; Jurassic Park's misguided and naive Dr John Hammond seemingly a rare exception. As for mathematicians, they are often depicted with more than a touch of insanity, such as in Pi or Fermat's Room.

So does Genius break the mould or follow the public perception of scientists as freaky, geeky, nerdy or plain evil? The script is a fairly sophisticated adaptation of real life events, although the science exposition suffers as a result. Despite some computer graphic sequences interwoven with the live action, the attempts to explore Einstein's thought experiments and theories are suggestive rather than comprehensive, the tip of the iceberg when it comes to his scientific legacy. Where the series succeeds is in describing the interaction of all four STEM disciplines: science, technology, engineering and mathematics; and the benefits when they overlap. The appalling attitudes prevalent in the academia of his younger years are also brought to vivid life, with such nonsense as not questioning tutors piled onto the usual misogyny and xenophobia.

Albert Einstein

Contrary to the popular conception of the lone genius - and counter to the series' title - the role of Einstein's friends such as Marcel Grossmann and Michele Besso as his sounding boards and mathematical assistants is given a high profile. In addition, the creative aspect of science is brought to the fore in sequences that show how Einstein gained inspiration towards his special and general theories of relativity.

The moral dimension of scientific research is given prominence, from Fritz Haber's development of poison gas to Leo Szilard's persuasion of Einstein to both encourage and later dissuade development of atomic weapons. As much as the scientific enterprise might appear to be separate from the rest of human concern, it is deeply interwoven with society; the term 'laboratory conditions' applies to certain processes, not to provide a wall to isolate science from everything else. Scientists in Genius are shown to have the same human foibles as everyone else, from Einstein's serial adultery (admittedly veering to Hollywood family drama at times, paternal guilt complex etal) to Philipp Lenard's dismissal of Einstein's theories due to his anti-Semitism rather than any scientific evidence. So much for scientific impartiality!

The last few episodes offer a poignant description of how even the greatest of scientific minds lose impetus, passing from creative originality as young rebels to conservative middle age stuck-in-the-muds, out of touch with the cutting edge. General readership books on physics often claim theoretical physicists do their best work before they are thirty, with a common example being that Einstein might as well have spent his last twenty years fishing. Although not as detailed as the portrayal of his early, formative years, Einstein's obsessive (but failed) quest to find fault with quantum mechanics is a good description of how even the finest minds can falter.

All in all, the first series of Genius is a very noble attempt to describe the inspiration and background that led to some revolutionary scientific theories. The irony is that by concentrating on Einstein as a human being it might help the wider public gain a better appreciation, if not comprehensive understanding, of the work of scientists and role of STEM in society. Surely that's no bad thing, especially if it makes Hollywood rethink the lazy stereotype of the crazy-haired scientist seeking world domination. Or even encourages people to listen to trained experts rather than the rants of politicians and religious nutbars. Surely that's not a difficult choice?

Monday, 26 June 2017

The power of pond scum: are microalgae biofuels a realistic proposition?

I've previously discussed some very humble organisms but they don't get much humbler than microalgae, photosynthetic organisms that generate about half our planet's atmospheric oxygen. Imagine then what potential there might be for their exploitation in a world of genetic manipulation and small-scale engineering? The total number of algal species is unknown, but estimates suggest some hundreds of thousands. To this end, private companies and government projects around the world have spent the past few decades - and a not inconsiderable amount of funding - to generate a replacement for fossil fuels based on these tiny plants.

For anyone with even a microgram's worth of common sense, developing eco-friendly substitutes for oil, coal and gas is a consummation to be devoutly wished for, but behind the hype surrounding microalgae-derived fuel there is a wealth of opposing opinions and potential some shady goings-on. Whilst other projects such as creating ethanol from food crops are continuing, the great hope - and hype -that surrounded algae-based solutions appears to be grinding to a halt.

Various companies were forecasting that 2012 would be the year that the technology achieved commercial viability, but this now appears to be rather over-eager. Therefore it's worth exploring what happens when hope, high-value commerce and cutting-edge technology meet. There are some big names involved in the research too: ExxonMobil, Shell and BP each pumped tens to hundreds of millions of dollars into microalgae fuel projects, only to either make substantial funding cuts or shut them down altogether since 2011.
Microalgae-derived biofuel
Manufacturing giants such as General Electric and Boeing have been involved in research for new marine and aircraft fuels, whilst the US Navy undertook tests in 2012 whereby algae-derived fuel was included in a 50:50 blend with conventional fossil fuel for ships and naval aircraft. Even shipping companies have become interested, with one boffin-worthy idea being for large cruise ships to grow and process their own fuel on-board. Carriers including United Airlines, Qantas, KLM and Air New Zealand have invested in these kerosene-replacement technologies, with the first two of these airlines having trialled fuel blends including 40% algae derivative. So what has gone wrong?

The issue appears to be one of scale: after initial success with laboratory-sized testing, the expansion to commercial production has encountered a range of obstacles that will most likely delay widespread implementation for at least another quarter century.

The main problems are these:
  1. The algae growing tanks need to be on millions of acres of flat land and there are arguments there just isn't enough such land in convenient locations.
  2. The growing process requires lots of water, which means large transportation costs to get the water to the production sites. Although waste water is usable, some estimates suggest there is not enough of this - even in the USA - for optimal production.
  3. Nitrogen and phosphorus are required as fertiliser, further reducing commercial viability. Some estimates suggest half the USA's annual phosphorus amount would need to be requisitioned for use in this one sector!
  4. Contamination by protozoans and fungi can rapidly destroy a growing pond's entire culture.
In 2012 the US National Academy of Sciences appeared to have confirmed these unfortunate issues. Reporting on the Department of Energy goal to replace 5% of the nation's vehicle fossil fuel consumption with algae-derived biofuel, the Academy stated that this scale of production would make unfeasibly large impacts on water and nutrient usage, as well heavy commitments from other energy sources.

In a bid to maintain solvency, some independent research companies appear to have minimised such issues for as long as possible, finally diversifying when it appeared their funding was about to be curtailed or cut-off. As with nuclear fusion research, commercial production of microalgae fuels hold much promise, but those holding the purse strings aren't as patient as the researchers.

There may be a hint of a silver lining to all this, even if wide scale operations are postponed many decades. The microalgae genus Chlorella - subject of a Scottish biofuel study - is proving to be a practical source of dietary supplements, from vitamins and minerals to Omega-3. It only lacks vitamin B12, but is an astonishing 50-60% protein by weight. As well as human consumption, both livestock and aquaculture feed supplements can be derived from microalgae, although as usual there is a wealth of pseudoscientific nonsense in the marketing, such as the notion that it has an almost magical detox capability. Incidentally, Spirulina, the tablets and powder sold in health food outlets to make into green gloop smoothies, is not microalgae but a B12-rich cyanobacteria, colloquially - and confusingly - known as blue-green algae. Glad that's cleared that one up!

If anything, the research into microalgae-derived biofuels is a good example of how new technology and commercial enterprise uneasily co-exist; each needs the other, but gaining a workable compromise is perhaps just a tricky as the research itself. As for Government-funded projects towards a better future for all, I'll leave you to decide where the interests of our current leaders lie...