Wednesday, 1 April 2020

Herbaceous dialects and dialectical materialism: how plants communicate with their pollinators

The inspiration behind this post stems from reading two of the giants of science popularisation during my formative years. The first component is from Carl Sagan's book Broca's Brain: Reflections on the Romance of Science, which remarks that the emotional lives of plants are an example of pure pseudoscience. The second is Stephen Jay Gould's essay on Pyotr Kropotkin, a nineteenth century Russian anarchist who wrote the essay collection Mutual Aid: A Factor of Evolution. What joins them together is recent research that uncovers an astonishingly complex relationship between certain plants and animals.

Kropotkin's hypothesis was that cooperation between species was as fundamental to life on our planet as natural selection. Although his socialist-motivated ideas have been somewhat downscaled by the evidence of the succeeding century, there are still some truths to be learnt about the mutual aid - or symbiosis if you prefer - between fundamentally different life forms.

I recently read about some experiments in Israel and Germany, which involved such esoteric boffinry as placing laser microphones close to tobacco and tomato plants in order to pick up any ultrasonic noises that they might emit. The plants were heavily pruned or moved into parched soil, in other words, subject to physiological stress.

Analysis of the recordings revealed high-pitch sounds (or in the researchers' words, 'squeals') emanating from their herbaceous guinea pigs. Not only did the sounds vary depending on whether the plant was suffering from mutilation or lack of moisture, but each species (both members of the Solanaceae family) had differing numbers of repetitions and time intervals between each sound. What's even more interesting is the noises differed according to the local invertebrate life, specifically the potential pollinating insects.

In addition to the scientists' equipment, animals such as bats and rodents were placed in the vicinity of the subjects and reacted to the sounds as they were being produced, verifying the shrieks as emanating from the plants. The physiological cause appears to be the movement of air bubbles within liquids such as sap, but how are plants able to perceive the problems, let alone respond to them?

It's been known for some years that plants can communicate with other members of their species via emitting chemical compounds; just think of the odour of freshly cut grass. Forest trees even share nutrients via a symbiotic root system in order to allow smaller members of their species to grow faster - so much for selfish genetics here!

Communication between plants by all three methods, namely direct contact, sound, and chemical odour, suggests purpose and awareness, only without a central nervous system to guide it. This might sound impossible, but then the marine bacteria species Bacillus subtilus uses potassium ions to communicate across its colonies and few would argue that bacterium are more advanced life forms than the kingdom Plantae. We should also remember that in even in animals, brains aren't the be-all and end-all: there are neurons in vertebrate (including human) stomachs and in the arms of cephalopods.

The symbiotic relationship between angiosperms (flowering plants) and pollinating insects evolved in the late Cretaceous, so natural selection has had over sixty-five million years to work on the communications systems between these collaborators. Could it be that plants have evolved a specialist messaging service for their pollinating symbionts, despite having no equivalent of neurons to coordinate it?

Some of the recent Israeli research seems to verify this – and how! When endangered by being cut or deprived of water, the specific noises were not only picked up by pollinating insects, they were acted upon. Insects such as hawk moths flew away from the plants that were suffering drought or mutilation to control specimens on the farthest side of the greenhouse laboratory and laid their eggs upon those plants. Meanwhile, other insects that were known pollinators on the same plant species but not local the region ignored the audio signals. Somehow, there is a level of fine-tuning going on that reveals the sensory world of plants is far superior to what is usually credited.

Parallel experiments successfully tested for the opposite effect. Individual tobacco plants with mature flowers sent messages that attracted the attention of local pollinators such as stilt bugs. All in all, it appears that certain plant species – at least of the Solanaceae family - engage in a form of mutual aid that Kropotkin would be proud of. Not only do plants use ultrasonics to target useful insects, they have developed a messaging service that is regionalised towards those insect species, essentially a dialect rather than a universal language.

While tobacco and tomato plants might not be screaming in pain every time they are cut or lacking water, it seems that they cannot be as easily dismissed as the poorer relation to us animals. The time may be due for a complete reappraisal of their perception capabilities, although amateur researchers would do well to remember that both tomato and tobacco are from the same family as the mandrake and as any Harry Potter fan should know, you wouldn't want to hear those scream!

Tuesday, 17 March 2020

Printing ourselves into a corner? Mankind and additive manufacturing

One technology that has seemingly come out of nowhere in recent years is the 3D printer. More correctly called additive manufacturing, it has only taken a few years between the building of early industrial models and a thriving consumer market - unlike say, the gestation period between the invention and availability of affordable domestic video cassette recorders.

Some years ago I mentioned the similarities between the iPAD and Star Trek The Next Generation's PADD, with only several decades separating the real-world item from its science fiction equivalent. Today's 3D printers are not so much a primitive precursor of the USS Enterprise-D's replicator as a paradigm shift away in terms of their profound limitations. And yet they still have capabilities that would have seemed incredibly futuristic when I was a child. As an aside, devices such as 3D printers and tablets show just how flexible and adaptable we humans are. Although my generation would have considered them as pure sci-fi, today's children regularly use them in schools and even at home and consider the pocket calculators and digital watches of my childhood in the same way as I looked at steam engines.

But whilst it can't yet produce an instant cup of earl grey tea, additive manufacturing tools are now being tested to create organic, even biological components. Bioprinting promises custom-made organs and replacement tissue in the next few decades, meaning that organ rejection and immune system repression could become a thing of the past. Other naturally-occurring substances such as ice crystals are also being replicated, in this case for realistic testing of how aircraft wings can be designed to minimise problems caused by ice. All in all, the technology seems to find a home in practically every sector of our society and our lives.

Even our remotest of outposts such as the International Space Station are benefiting from the use of additive manufacturing in cutting-edge research as well as the more humdrum role of creating replacement parts - saving the great expense of having to ship components into space. I wouldn't be surprised if polar and underwater research bases are also planning to use 3D printers for these purposes, as well as for fabricating structures in hostile environments. The European Space Agency has even been looking into how to construct a lunar base using 3D printing, with tests involving Italian volcanic rock as a substitute for lunar regolith.

However, even such promising, paradigm-shifting technologies as additive manufacturing can have their negative aspects. In this particular case there are some obvious examples, such as home-printed handguns (originally with very short lifespans, but with the development of 3D printed projectiles instead of conventional ammunition, that is changing.) There are also subtle but more profound issues that arise from the technology, including how reliance on these systems can lead to over-confidence and the loss of ingenuity. It's easy to see the failure due to hubris around such monumental disasters as the sinking of the Titanic, but the dangers of potentially ubiquitous 3D printing technology are more elusive.

During the Apollo 13 mission in 1970, astronauts and engineers on the ground developed a way to connect the CSM's lithium hydroxide canisters to the LM's air scrubbers, literally a case of fitting a square peg into a round hole. If today's equivalents had to rely solely on a 3D printer - with its power consumption making it a less than viable option - they could very well be stuck. Might reliance on a virtual catalogue of components that can be manufactured at the push of a button sap the creativity vital to the next generation of space explorers?

I know young people who don't have some of the skills that my generation deemed fairly essential, such as map reading and basic arithmetic. But deeper than this, creative thinking is as important as analytical rigour and mathematics to the STEM disciplines. Great physicists such as Einstein and Richard Feynman stated how much new ideas in science come from daydreaming and guesswork, not by sticking to robot-like algorithmic processes. Could it be that by using unintelligent machines in so many aspects of our lives we are starting to think more like them, not vice versa?

I've previously touched on how consumerism may be decreasing our intelligence in general, but in this case might such wonder devices as 3D printers be turning us into drones, reducing our ability to problem-solve in a crisis? Yes, they are a brave new world - and bioprinting may prove to be a revolution in medicine - but we need to maintain good, old-fashioned ingenuity; what we in New Zealand call the 'Number 8 wire mentality'. Otherwise, our species risks falling into the trap that there is a wonder device for every occasion - when in actual fact the most sophisticated object in the known universe rests firmly inside our heads.