Tuesday, 1 April 2014

Dino wars: is that dinosaur Kiwi or Aussie?

It's a cheap piece of rhetoric to invoke the long-running if affectionate New Zealand-Australian rivalry, but what with the current campaign to redesign the New Zealand flag in order to differentiate it more its trans-Tasman neighbour, I thought it would be a good opportunity to discuss a science-themed story along these lines. In fact, the account bears some resemblance to the years spent arguing over Otzi, the Copper Age man found preserved in ice on the Austrian-Italian border. Although in this case, the focus of the disagreement isn't as clear-cut, since it concerns ancient remains found in both nations.

Even for a country with a population under five million, New Zealand has a seemingly minimal number of professional palaeontologists. That is, until you consider that the lack of industry application for the discipline's findings means its pretty good that there are any practitioners whatsoever. Numbers vary, but figures I have seen for the past few decades vary from less than a dozen to thirty or so professionals, most working for universities or state bodies. By comparison France, with twice the geographic area of New Zealand, has around one hundred professionals.

It isn't just the current financial crisis that has caused problems for would-be kiwi fossil hunters: funding has been steadily decreasing for the past half century and the emphasis shifted towards environmental research. This latter focuses on exploring the (very) long term changes that have affected not just the landmass as it is today but the largely submerged (90% or so) continent of Zealandia. This is of course extremely timely but it does enhance the idea that without much in the way of obvious practical returns, New Zealand palaeontology could dwindle to almost nothing. As it is, the country doesn't have a specialist palaeontological journal or even a dedicated palaeontological society.

The funding issue is claimed to be responsible for the loss of basic knowledge within the discipline, leading to problems such as taxonomic confusion and a backlog for formal descriptions, perhaps numbering some thousands of species, that are new to science. Of course New Zealand's distance from other nations doesn't help either, since the internet has frequently to be relied upon in lieu of direct representation at international conferences and the like. Therefore perhaps it's not surprising that there are only a couple of professional palaeontologists (part-time, at that) working on Mesozoic flora and fauna, including that much-loved clade, dinosaurs.

Luckily, this lack of professional numbers is partially redressed by dedicated amateurs, some of whom have played a pivotal role in dinosaur discoveries. The most famous is the late Joan Wiffen, who discovered New Zealand's first dinosaur fossils in 1974 after experts had proclaimed it unlikely any would be found (on the basis of the geological history of the current above sea-level land masses). I'm all for amateur fossicking and Joan Wiffen's four decades of dedication is an example to us all.

The heart of this piece concerns the discovery of the ninth dinosaur species found in New Zealand and serves as an instructive example of scientists at work knee-deep in messy reality rather than the unreachable ideal. One specimen that you won't find on FRED - the 95,000+ localities' Fossil Record Electronic Database - is the young theropod (carnivorous dinosaur) discovered in 2008 in New Zealand's dinosaur heartland, the Mangahouanga Stream between Taupo and Hawke's Bay. The specimen is only about forty centimetres long and is largely intact: a fully articulated skeleton only lacking a toe and a few tail end vertebrae. After 18 months careful preparation the reptile was in a suitable condition for high-level analysis, having - due to lack of budget - only received cursory examination during the removal of the overlying matrix. Having assessed the deposition layer as mid-Cretaceous the next obvious question was presumably which species did it belong to?

The most likely candidate for a species already scientifically described is the 5-6 metre gracile carnivore Australovenator wintonensis, which is known from fragmentary remains in central Queensland. At less than half a metre long, the New Zealand find would have to be a very young individual, which was the original opinion of the preparators. But the brief analysis of a visiting British palaeontologist put this into question, for although the upper jaw is missing from the adult Australovenator specimen, enough was present to suggest that the New Zealand skull is both too deep and too robust to be the same species. In addition, the kiwi remains has forearms that appear too long when compared to Australovenator, even accounting for variation in growth between youngster and adult.

Then in late 2009 the Australian Journal of Vertebrate Paleontology published an article claiming the New Zealand specimen was just an infant Australovenator. At this point patriotism started to kick in. Even though 'Australo' only means 'south' the word is close enough to the name of the larger nation to provoke the kiwi fossil community into a counter attack. A core group of Hawke's Bay-based amateur fossil hunters nicknamed the little dinosaur 'Hillaryonyx' (named after Everest pioneer Sir Edmund, of course) and the scene was set for a brontosaurus-sized brouhaha.

Although largely powerless, the passion of the non-professional fossicking community should not be underestimated. Everything that could be done to raise funding for a full analysis of the young reptile was undertaken: web articles were written, t-shirts were printed, even lyrics for a song called 'He's ours' (to the tune of the folk song 'No Moa!') On the basis of this, questions were asked in New Zealand parliament and as a result, and a bit of a whipround by some of the universities, money was found for eight months of part-time analysis by two palaeontologists with some experience on Mesozoic vertebrates. As mentioned previously, the reduction in funding for the discipline meant that there wasn't - and still isn't - a single full-time professional scientist dedicated to the era.

Once the analysis was complete the intention was to have a monograph published by GNS Science, a government-owned research institute, prior to public exhibition of the fossil. Everything seemed to be going smoothly, until several visiting Australian palaeontologists asked to see the prepared slab. They were at first stalled, and then later denied access, even to just photographs of the bones. Several arbitrary reasons were given, but the most likely motive for this behaviour was that the kiwi scientists were still assessing the species of the dinosaur. Which, given the loss of taxonomic knowledge mentioned above, was a tricky business if restricted to just New Zealand scientists. So much so, that it took the next two and a half years before anything further was heard.

The latest New Zealand dinosaur fossil

It's not known who was allowed to examine the fossil during this time but by late 2013 rumours surfaced that the dinosaur had been finally identified as a species new to science. A badly scanned interim report was leaked, containing several figures of the prepared fossil, included the photograph above. More significantly, the report listed eleven points of fundamental anatomical disparity with Australovenator, which have since proved enough to convince the majority of naysayers. The few who are still doubtful are all, needless to mention - but I will anyway - Australian. Until the beginning of this year it seemed the specimen would remain in limbo, but someone, somewhere, perhaps a leading university figure or government official, has pulled their finger out and New Zealand's latest endemic dinosaur species may soon be appearing in the records of the International Commission on Zoological Nomenclature (ICZN).

So not exactly an ideal way to pursue science by any stretch of the imagination. But the story is proof that cuts in funding can cause all sorts of problems for science in the long-term, even if the matter appears trivial to the layman.

Oh, and as for the official name for the creature: Stultusaurus aprillis. How appropriate!

Saturday, 15 March 2014

Cutting remarks: investigating five famous science quotations

If hearing famous movie lines being misquoted seems annoying, then misquoted or misused science citations can be exasperating, silly or downright dangerous. To this end, I thought that I would examine five well-known science quotations to find the truth behind the soundbite. By delineating the accurate (as far as I'm aware) words in the wider context in which they were said/written down/overheard by someone down the hallway, I may be able to understand the intended meaning, and not the autopilot definition frequently used. Here goes:

1) God does not play dice (Albert Einstein)

Possibly Einstein's most famous line, it sound like the sort of glib comment that could be used by religious fundamentalists to denigrate science in two opposing fashions: either Einstein is being facetious and therefore sacrilegious; or he supports an old-fashioned version of conventional Judeo-Christian beliefs in which God can be perceived in the everyday world. Talk about having your cake and eating it!

Einstein is actually supposed to have said: "It is hard to sneak a look at God's cards. But that he would choose to play dice with the world...is something that I cannot believe for a single moment." This gives us much more material to work with: it was actually a quote Einstein himself supplied to a biographer. Some years earlier he had communicated with physicist Max Born along similar lines: "Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one'. I, at any rate, am convinced that He does not throw dice."

So here is the context behind the quote: Einstein's well-known disbelief in the fundamental nature of quantum mechanics. As I've discussed in a previous post Einstein's opinions on the most accurate scientific theory ever devised was completely out of step with the majority of his contemporaries - and physicists ever since. Of course we haven't yet got to the bottom of it; speaking as a non-scientist I find the Copenhagen Interpretation nonsense. But then, many physicists have said something along the lines of that if you think you understand quantum mechanics, you haven't understood it. Perhaps at heart, Einstein was stuck in a Nineteenth Century mind set, unable to conceive of fundamental limits to our knowledge or that probability lies at the heart of reality. He spent decades looking for a deeper, more obviously comfortable, cause behind quantum mechanics. And as for his interest in the 'Old One', Einstein frequently denied his belief in a Judeo-Christian deity but referred to himself as an agnostic: the existence of any presence worthy of the name 'God' being "the most difficult in the world". Now there's a quote worth repeating!

2) Science is a way of thinking much more than it is a body of knowledge (Carl Sagan)

As I've mentioned before, Bill Bryson's A Short History of Nearly Everything is chock full of the results of scientific investigation but rarely stops to consider the unique aspects that drive the scientific method, or even define the limits of that methodology. Sagan's full quote is: "Science is more than a body of knowledge. It is a way of thinking; a way of sceptically interrogating the universe with a fine understanding of human fallibility. If we are not able to ask sceptical questions, to interrogate those who tell us that something is true, to be sceptical of those in authority, then, we are up for grabs for the next charlatan (political or religious) who comes rambling along."

It is interesting because it states some obvious aspects of science that are rarely discussed, such as the subjective rather than objective nature of science. As human beings, scientists bring emotions, selective memory and personal preferences into their work. In addition, the socio-cultural baggage we carry is hardly ever discussed until a paradigm shift (or just plain, old-fashioned time has passed) and we recognise the idiosyncrasies and prejudices embedded into research. Despite being subject to our frailties and the zeitgeist, once recognised, these limitations are part of the strength of the discipline: it allows us, at least eventually, to discover their effect on what was once considered the most dispassionate branch of learning.

Sagan's repeated use of the word sceptical is also of great significance. Behind the multitude of experimental, analytical and mathematical methods in the scientific toolkit, scepticism should be the universal constant. As well as aiding the recognition of the biases mentioned above, the sceptical approach allows parsimony to take precedence over authority. It may seem a touch idealistic, especially for graduate students having to kowtow to senior faculty when seeking research positions, but open-minded young turks are vital in overcoming the conservative old guard. Einstein's contempt for authority is well-known, as he made clear by delineating unthinking respect for it as the greatest enemy of truth. I haven't read Stephen Jay Gould's Rocks of Ages: Science and Religion in the Fullness of Life, but from what I understand of his ideas, the distinction concerning authority marks a clear boundary worthy of his Non-Overlapping Magisteria.

3) The mystery of the beginning of all things is insoluble by us; and I for one must be content to remain an agnostic (Charles Darwin)

From the original publication of On the Origin of Species in 1859 to the present day, one of the most prominent attacks by devoutly religious critics to natural selection is the improbability of how life started without divine intervention. If we eventually find microbial life on Mars - or larger organisms on Titan, Europa or Enceladus - this may turn the tide against such easy a target, but one thing is for certain: Darwin did not attempt to detail the origin of life itself. Although he stated in a letter to a fellow scientist: "But if (and Oh! What a big if!) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, lights, heat, electricity etc., present that a protein compound was chemically formed ready to undergo still more complex changes" there are no such broad assumptions in his public writings.

As it turns out, Darwin may have got some of the details correct, although the 'warm little pond' is more likely to have been a deep sea volcanic vent. But we are still far from understanding the process by which inert chemicals started to make copies of themselves. It's been more than sixty years since Harold Urey and Stanley Miller at the University of Chicago produced amino acids simply by recreating what conditions were then thought to resemble on the early Earth. Despite numerous variations on this classic experiment in subsequent decades, we are little closer to comprehending the origin of life. So it was appropriate that Darwin, who was not known for flights of fancy (he once quipped "My mind seems to have become a kind of machine for grinding general laws out of large collections of facts") kept speculation out of his strictly evidence-based publications.

Just as Darwin has been (at times, deliberately) misquoted by religious fundamentalists determined to undermine modern biology, his most vociferous disciple today, Richard Dawkins, has also been selectively quoted to weaken the scientific arguments. For example, printing just "The essence of life is statistical improbability on a colossal scale" as opposed to the full text from The Blind Watchmaker discussing cumulative natural selection, is a cheap literary device that lessens the critique, but only if the reader is astute enough to investigate the original source material.

4) Anybody who has been seriously engaged in scientific work of any kind realizes that over the entrance to the gates of the temple of science are written the words: 'Ye must have faith.' (Max Planck)

Thomas Henry Huxley (A.K.A. Darwin's Bulldog) once wrote that "Science is organized common sense where many a beautiful theory was killed by an ugly fact." But that was back in the Nineteenth Century, when classical physics ruled and scientists predicted a time in the near future when they would understand all the fundamentals of the universe. In these post-modern, quantum mechanical times, uncertainty (or rather, Uncertainty) is key, and common sense goes out of the window with the likes of entanglement, etc.

Back to Planck. It seems fairly obvious that his quote tallies closely with the physics of the past century, in which highly defined speculation and advanced mathematics join forces to develop hypotheses into theories long before hard evidence can be gleaned from the experimental method. Some of the key players in quantum physics have even furthered Copernicus' preference for beautiful mathematics over observation and experiment. Consider the one-time Lucasian Professor of Mathematics Paul Dirac's partiality for the beauty of equations over experimental results, even though he considered humanity's progress in maths to be 'feeble'. The strangeness of the sub-atomic world could be seen as a vindication of these views; another of Planck's quotes is "One must be careful, when using the word, real."

Leaving aside advanced physics, there are examples in the other scientific disciplines that confirm Planck's view. In the historical sciences, you can never know the full story. For example, fossils can provide some idea of the how and when a species diverged into two daughter species, but not necessarily the where and why (vis-à-vis ecological 'islands' in the wider sense). Not that this lack of precision should be taken as doubt of validity. As evolutionary biologist Stephen Jay Gould once said, a scientific fact is something "confirmed to such a degree that it would be perverse to withhold provisional assent."  So what might appear to primarily apply to one segment of the scientific endeavour can be applied across all of science.

5) Space travel is utter bilge (Richard van der Riet Woolley, Astronomer Royal)

In 1956 the then-Astronomer Royal made a prediction that was thoroughly disproved five years later with Yuri Gagarin's historic Vostock One flight. The quote has been used ever since as an example of how blind obedience to authority is unwise. But Woolley's complete quote was considerably more ambiguous: "It's utter bilge. I don't think anybody will ever put up enough money to do such a thing...What good would it do us? If we spent the same amount of money on preparing first-class astronomical equipment we would learn much more about the universe...It is all rather rot." He went on say: "It would cost as much as a major war just to put a man on the moon." In fact, the latter appears to be quite accurate, and despite the nostalgia now aimed at the Apollo era, the lack of any follow-up only reinforces the notion that the race to the moon was simply the ultimate example of Cold War competition. After all, only one trained geologist ever got there!

However, I'm not trying to defend the edited version of Woolley's inopportune statement since he appears to have been an armchair naysayer for several decades prior to his most famous quote. Back in 1936, his review of Rockets Through Space: The Dawn of Interplanetary Travel by the first president of the British Interplanetary Society (BIS) was even more pessimistic: "The whole procedure [of shooting rockets into space]...presents difficulties of so fundamental a nature, that we are forced to dismiss the notion as essentially impracticable, in spite of the author's insistent appeal to put aside prejudice and to recollect the supposed impossibility of heavier-than-air flight before it was actually accomplished." Again, it might appear in hindsight that Woolley deserves scorn, were it not for the fact that nearly everyone with some knowledge of space and aeronautics was of a similar opinion, and the opposition were a few 'cranks' and the like, such as BIS members.

The moral of the this story is that it is far from difficult to take a partial quote, or a statement out of context, and alter a sensible, realistic attitude (for its time and place) into an easy piece of fun. A recent tweet I saw was a plaintive request to read what Richard Dawkins actually says, rather than what his opponents claim he has says. In a worst-case scenario, quote-mining makes it possible to imply the very opposite of an author's intentions. Science may not be one hundred percent provable, but it's by the far the best approach we have to finding out that wonderful thing we humans call 'the truth'.