Thursday, 29 October 2015

Cutting edge: can New Zealand hold its own as an innovation nation?

On a recent trip to MOTAT (for those not in the know, Auckland's Museum of Transport and Technology) I was looking around a restored Edwardian period school room when I came across a list of classroom rules. One in particular stood out: 'Do not ask questions'. How times have changed! As the late New Zealand physicist Sir Paul Callaghan once said: "You don't need to teach a child curiosity. Curiosity is innate. You just have to be careful not to quash it. This is the challenge for the teacher - to foster and guide that curiosity." But are there enough resources in New Zealand today to support that curiosity, not just in children but for science and technology professionals too?

In the shadow of the seemingly endless Rugby World Cup coverage, the New Zealand Science and Innovation Minister Steven Joyce has launched the National Statement of Science Investment (NSSI). Although investment in the science and technology sector has increased within the past decade, I've come across various kiwi scientists with prominent social media profiles who constantly vent their frustration at the amount of timing spent bidding for funds - only for the majority of those bids to fail.

New Zealand is somewhat towards the lower end of the scale in government investment in research and development, but the nation appears even more hampered by apathy from the private sector. A key aim of the NSSI is to attract more private funding towards science, technology and engineering but with a very small internal market and many of the larger corporations controlled from overseas, the record to date hasn't been particularly good. Comparisons to other small developed nations bear this out. For example, the Republic of Ireland has only a slightly larger population than New Zealand but double the industrial research and development spend as a percentage of GDP. Other European countries fare even better, with Finland spending correspondingly more than quadruple New Zealand's figure!

Perhaps it is not surprising then to hear that after a comparatively high quality education, many New Zealand post-graduates and science professionals seek opportunities abroad. Not that this is a recent phenomenon; all three New Zealand-born science Nobel laureates spent their professional lives working in the UK, USA or Canada. For a nation that produces a relatively large output of STEM (science, technology, engineering and mathematics) articles, the impression is that kiwi ingenuity can only make limited resources go so far. As long as industry fails to support more than a paltry amount of research, there just won't be enough funding to support native talent.

But it isn't all doom and gloom. In addition to projects aimed at short-term improvements in native sectors such as the dairy industry, New Zealand is one of ten nations involved in the Square Kilometre Array radio telescope. However, investment for this long-term project - one apparently lacking immediate practical benefits too - appears to be primarily via public rather than private finance.

You have only to consider New Zealand retail prices compared to other developed nations to understand that a combination of a remote geographic location and low population size and density are prime economic movers. This doesn't prevent canny kiwis from attempting STEM innovations, although it frequently ends with large-scale development implemented in larger, wealthier nations.

Two recent examples show these issues in vivid detail. Award-winning high school student Ayla Hutchinson invented the Kindling Cracker, a much safer way to split wood kindling than the traditional axe-on-a-stump method. However, when her Auckland-based manufacturers were unable to produce the device without a large cost increase, the young inventor was forced to seek an overseas company to produce it.

Another success story of Kiwi ingenuity is the field-leading wireless power technology firm PowerbyProxi, which in the past few years has formed a business relationship with international giants such as Samsung and Texas Instruments. One key issue they have faced in their home nation has been a shortage of skilled staff, further evidence that a brain drain on a small population can lead to the ultimate irony of having to recruit specialists from abroad. The NSSI and last year's strategic plan A Nation of Curious Minds - He Whenua Hihiri i te Mahara are aiming to address this via changes within state education and citizen science. But will the private sector follow suit and step up to the mark in order to give the next generation of New Zealand scientists a 'fair go'?

New Zealand has long been acclaimed as punching above its weight in many arenas, not just rugby, but its future in STEM fields seems uncertain. I wonder if the canny kiwi/pioneer attitude (think: number eight fencing wire solutions) that has been so successful in the past is still suitable at a time when even if not requiring LHC mega-budgets, much science and technology innovation requires stable funding sources? The Government clearly have the country's long-term prospects in mind with the new strategies, but without adequate private sector finance the next generation of STEM graduates might well consider pursuing their careers abroad. Considering the nation-specific developments in science and technology that the future clearly requires, this would not be a good thing!

Monday, 28 September 2015

Resurrecting megafauna: the various problems of de-extinction

The record-breaking success of Jurassic World proves that if there's anything a lot of people want to see in the animal kingdom it is species that are both large and fierce. Unfortunately, in these post-glacial times that type of fauna has been much reduced and will no doubt wane even further - not that I particularly wish to encounter an apex predator at close quarters, you understand.

Hollywood, of course, has much to answer for. There was plenty of poor science in the original Jurassic Park movie - the use of gap-filling frog DNA being a far worse crime in my book than the over-sized velociraptors (think Achillobator and similar species) but the most recent film in the franchise has pointedly ignored the advances in dinosaur knowledge made in the intervening period. Perhaps a CGI test of a feathered T-Rex looked just to comical?

In contrast, the amount of publically-available material discussing de-extinction has increased exponentially in the two decades since Jurassic Park was released, with the line between fact and fiction well and truly blurred. That's not to say that an enormous amount hasn't been learned about the DNA of extinct species during this period. I recently watched a rather good documentary on the National Geographic channel (yes, it does occasionally happen) about the one-month old baby mammoth Lyuba, recovered in Siberia almost forty-two thousand years after she died. The amount of genetic information that has been recovered from mammoths is now extremely comprehensive, but then they were alive until almost yesterday at geological timescales. Needless to say the further back in time a creature existed, the more problematic it is to retrieve any genetic material.

A lot has been written about the methods that have been, or could in the near future, be used to resurrect ancient animals. Some procedures involve the use of contemporary species as surrogate parents, such as elephants standing in for mother mammoths. But it seems fair to say that all such projects are finding difficulties rather greater than originally planned. One common misconception is that any resurrected animal would be a pure example of its kind. Even the numerous frozen mammoth carcasses have failed to supply anywhere near a complete genome and of course it isn't just a case of filling in gaps as per a jigsaw puzzle: one primary issue is how to know where each fragment fits into the whole. Our knowledge of genetics may have advanced enormously since Watson and Crick's landmark 1953 paper, but genetic engineering is still incredibly difficult even with species that are alive today. After all, Dolly the sheep wasn't a pure clone, but had nuclear DNA from one donor and mitochondrial DNA from another.

Therefore instead of resurrecting extinct species we would be engineering hybrid genomes. Jurassic World took this process to the extreme with Indominus rex, a giant hybrid of many species including cuttlefish! Some research suggests that the most of the original genes of any species over a million years old – and therefore including all dinosaurs – might never be recovered. Something  terrible lizard-ish may be built one day, but it would be closer to say, a chicken, with added teeth, a long bony tail and a serious attitude problem. In fact, George Lucas has been a key funder of the chickenosaurus project with aims along these lines. Let's hope he doesn't start building an army of them, totally obedient clones, ready for world domination…oh no, that was fiction, wasn't it?

But if – or more likely, when – creating variants of extinct species becomes possible, should we even attempt it? Apart from the formidable technical challenges, a lot of the drive behind it seems to be for populating glorified wildlife parks, or even worse, game reserves. The mock TV documentary series Prehistoric Park for example only contained large animals from various periods, frequently fierce carnivores, with no attention given to less conspicuous creatures or indeed flora. This gee-whiz mentality seems to follow a lot of the material written about de-extinction, masking some very serious long-term issues in favour of something akin to old-style menageries. Jurassic Park, in fact.

A big question that would be near impossible to answer in advance is whether such a species would be able to thrive or even survive in a climate far removed from the original, unless there was major genetic engineering just for such adaptive purposes. Again, the further back the animal lived, the less likely it is that there is a contemporary habitat close to the original. It may be possible to recreate glacial steppes suitable for some mammoth species, but what about the Earth of ten million or one hundred million years ago? Prehistoric Park got around the issue for its Carboniferous megafauna by housing them in a high oxygen enclosure, which is certainly a solution, if something of a fire hazard!

Any newly-created animal will lack the symbiotic microbial fauna and flora of the original era, but I've not seen much that tackles this issue. I suppose there could be a multi-stage process, starting with deliberate injections of material in vitro (or via the host /mother). But once the animal is born it will have to exist with whatever the local environment/habitat has to offer. The chimerical nature of the organism may help provide a solution, but again this takes the creature even further from the original.

Then there is the rather important issue of food. To his credit, Michael Crichton suggested in Jurassic Park that herbivorous dinosaurs swallowing gizzard stones might accidentally eat berries that their metabolism couldn't handle. It would be extremely expensive to maintain compounds large enough for megafauna that are constantly kept free of wind-blown, bird-dropped and otherwise invasive material dangerous to the animals.

If the hybrids were allowed free reign, what if they escaped or were able to breed naturally? Given a breeding population (as opposed to say, sterilised clones) evolution via natural selection may lead them in a new direction. It would be wise to consider them as an integral part of the ecosystem into which they are placed, remembering Darwin's metaphor of ten thousand sharp wedges. Is there a possibility that they could out-compete modern species or in some other way exacerbate the contemporary high rate of extinction?

I've previously discussed the dangers of deliberate introduction of foreign species for biological control purposes: surely introducing engineered hybrids of extinct species is the ultimate example of this process? Or would there be a complete ban on natural reproduction for resurrected species, with each generation hand-reared from a bank of genetic material? At this point it should be clear that it isn't just the nomenclature that is confusing.

Some research has been undertaken to investigate the de-extinction of species whose demise during the past few centuries can clearly be blamed on humans, obvious examples being the Tasmanian tiger and the nine species of New Zealand moa. It could be claimed that this has more to do with alleviating guilt than serving a useful purpose (assuaging crimes against the ecosystem, as it were) but even in these cases the funds might be better turned towards more pressing issues. After all, two-thirds of amphibian species are currently endangered, largely due to direct human action. That's not to say that such money would then be available, since for example, a wealthy business tycoon who wants to sponsor mammoth resurrection - and they do exist - wouldn't necessarily transfer their funding to engineering hardier crops or revitalising declining pollinating insect species such as bees.

As it happens, even species that existed until a few hundred years ago have left little useable fragments of DNA, the dodo being a prime example. That's not to say that it won't one day be retrievable, as shown by the quagga, which was the first extinct species to have its DNA recovered, via a Nineteenth Century pelt.

As Jeff Goldman's chaos mathematician says in Jurassic Park, "scientists were so preoccupied with whether or not they could that they didn't stop to think if they should". Isn't that a useful consideration for any endeavour into the unknown? If there's one thing that biological control has shown, it is to expect the unexpected. The Romans may have enjoyed animal circuses, but we need to think carefully before we create a high-tech living spectacle without rather more consideration to the wider picture than appears to currently be the case.