Showing posts with label Predator Free 2050. Show all posts
Showing posts with label Predator Free 2050. Show all posts

Monday 18 October 2021

Volunteering for victory: can people power make New Zealand pest-free?

I've often discussed citizen science and how it varies from pie-in-the-sky research to projects with practical goals that may be achievable within a lifetime. When it comes to conserving native species New Zealand has a plethora of public engagements, including the Garden Bird Survey and Great Kererū Count (the latter being the country's largest citizen science project.) In a nation that is slowly waking to the realisation that it is far from '100% Pure', concerted efforts are finally be made to secure a future for beleaguered native fauna (and to a lesser extent flora, although few are seemingly aware of the interdependencies).

In late 2016 I wrote a post about the Predator Free 2050 scheme, focusing on how impractical it seemed. There was good reason for this: the University of Auckland estimated that it would require an astonishing NZ$9 billion to implement, a figure approaching 4% of the national GDP. Five years on and it appears this negativity was well deserved, as the project appears woefully underfunded; according to their website so far only NZ$178 million has been spent on the scheme. By comparison the annual budget for controlling possums, rats and stoats is NZ$114m, so it could hardly be deemed a flying start. There are an estimated 30 million possums in New Zealand, never mind the mustelids, rodents and other lesser pest species; the obvious implication is that numbers this large will require equally immense resources to eradicate them.

So what's to prevent this from being just another example of  'doomscrolling', of which have plentiful examples at the moment? After all, with billionaires now spending precious resources on racing to become astronauts - presumably superyachts are so last decade - it could be argued that those with the funds for the task just aren't interested in anything as mundane as conservation. It's often said that it is the people who make a place and in the case of New Zealand, it could just be the citizens - both with and without science - that make the difference. Kiwi ingenuity (that's the people, not the bird) and the 'number eight wire' mentality have enabled a young nation to punch well above its weight in so many fields. Can they do likewise in conservation?

Let's start with the science. New Zealand's rugged landscape requires a smart approach to predator control; there are so many reasons why flying thousands of bait-dropping helicopter missions would not be a good idea, not least due to the impossibility of funding them. Various projects are therefore now looking to lower the cost of poisoning and trapping, seeking robust maintenance-free solutions that can survive in the wilderness with minimal human intervention. From new thermal imaging cameras to auto-reset bait stations containing long-lasting toxins, research projects are showing that small-scale developments can make enormous differences to pest eradication. Hopefully, some of these devices will be out in the field in useful numbers within the next few years.

Often unsung heroes, there are also thousands of New Zealand citizens doing unpaid conservation work. I've met various volunteers for the Department of Conservation who spend their weekends climbing up and down knotted ropes and wading through icy streams in order to replenish bait boxes and reset traps. Many are retirees and some are ex-military - it's physically demanding and not at all glamorous, but can very satisfying work. The nation has a long history of such volunteering, something which has escalated in the past forty years with the setting up of predator-free fenced mainland sanctuaries and small sanctuary islands. To date, there are approximately 120 such refuges for native wildlife, many having been initiated by their local community and now being sustained by volunteers.

Even businesses are belatedly getting in on the act, giving their staff paid workdays to undertake volunteering such as planting and weeding within sanctuaries and coastal rubbish clean-ups. Earlier this year (between lockdowns of course) I was lucky enough to spend a day on Motuihe Island in the Hauraki Gulf, one of a group of thirty or so volunteers removing the noxious invasive plant woolly nightshade. What was amazing was seeing small flocks of native birds such as saddleback/tīeke, New Zealand parakeet/kākāriki and whitehead/pōpokotea, as opposed to the usual one or two you might see elsewhere (such as in zoo enclosures). Clearly, the planting of native species and foreign pest eradication - including abseiling to reach some of the weeds - has paid off beautifully.

Small islands are one thing, but what about the mainland? The nation's capital, Wellington, might be claimed by its inhabitants to be leading the way. Predator Free Wellington is the umbrella organisation for a range of projects that are aiming to eradicate pests from 30,000 hectares in and around the city. Already being possum free, the Miramar peninsula has been the starting point of rodent eradication, with almost 10,000 bait stations and traps placed at regularly intervals, mostly in residential gardens. The project is labour-intensive but still costs millions, so the hope is that by setting an example of what can be achieved, other regions in the country will follow suit. Whether their local councils will prove as farsighted as the capital's remains to be seen.

Like climate change mitigation, it seems that engaging and motivating the general public will be the only way to achieve a predator-free New Zealand, whether in 2050 or most likely at some point later. If this seems a bit naive - and overly optimistic, especially when compared to my initial assessment in 2016 - then last year's incredible work by the population to contain COVID-19 made New Zealand a frequent feature on international headlines, something that was previously a rare event. The 'team of five million' showed the naysayers (most of these, in my experience, being middle-aged white men) that even a relatively small group of people, globally speaking, could provide inspiration and be a role model to kick-start action elsewhere. If a lot of people take a little action, surely it can combine into an enormous amount of change? Much depends on the success - and cost - of Predator Free Wellington; if the nation's capital can achieve it the snowball effect might just take off, with local groups of volunteers making up for the lack of support from government and big business. 

What's in it for the volunteers, you might ask? The health benefits, from physical exercise to reducing stress and anxiety, are now well established. In addition, those who dedicate their spare time to unpaid conservation work can learn new practical skills, meet like-minded people, engage in teamwork and gain enjoyment from the sheer empowerment - knowing that you are actually achieving something useful. According to the Department of Conservation, it is estimated there are currently 200,000 active volunteers in this sector, which might not sound like a large number until you realise that it accounts for almost four percent of the New Zealand population!

Considering the history of the fenced reserves and sanctuary islands, it seems clear that motivating local communities can achieve wonders. If the Predator Free project is to succeed, we need a widespread engagement of the general population. New Zealand is far from alone, but having lost over fifty birds (more if you include the Chatham Islands), three lizards, three frogs, a bat, a freshwater fish, four plant species and numerous invertebrates, now is the time to act. Despite the negative effects of pollution and habitat loss due to development, it is a sobering thought that invasive fauna are equally capable of inflecting immense damage on a previously isolated ecosystem. As this plaque shows, many species were lost prior to the landing of the first Europeans: the original human inhabitants of New Zealand arrived less than a thousand years ago, but a combination of the introduced Polynesian rat and Polynesian dog, and their own hunting prowess, rapidly kick-started the eradication process.

Well, this is my last post, as least for a while. After twelve years I've learnt an enormous amount, but my sustainability champion voluntary work - engaging with over 5,000 work colleague on climate change mitigation and wider environmental issues - is taking up my spare time. If there is a moral to this story, it's a simple one: let's act - now!


Friday 14 May 2021

Weedbusting for a better world: the unpleasant truth about invasive plants

There's been a lot written about New Zealand's Predator Free 2050 programme, including my own post from 2016, but while the primary focus has been on fauna, what about the invasive species of flora? Until recently it was easy to think of plants as poor man's animals, with little in the way of the complex behaviour that characterises the life of vertebrates and many invertebrates. However, that's been changing thanks to studies that show the life of plants is actually rather complex - and includes the likes of chemical signalling. Although they might not have the emotional impact of animals, land vegetation alone has about one thousand times the mass of terrestrial fauna. So they're important - and then some!

A few months' ago I was volunteering on the sanctuary island of Motuihe, less than an hour's boat ride from downtown Auckland. Our group was charged with cutting down woolly nightshade, a soil-poisoning plant native to South America. Destroying these evil-smelling shrubs made me wonder how and why they were introduced to New Zealand in the first place, considering they don't look particularly attractive and their berries are poisonous to humans. Like so many exotic plant species, they were apparently deliberately introduced as a decorative garden plant, though frankly I can't see why. 

Like many similar stories from around the world, New Zealand has been inundated with large numbers of non-native floral species. Unlike woolly nightshade, some were introduced for practical purposes, such as radiata pine for timber and gorse for hedging, while others were accidentally brought in as seeds in soil. In many cases they are stories of greed and incompetence, for which later generations have paid a heavy price. 

Although there were pioneering lone voices who from as early as the late nineteenth century could see the deleterious effects of exotic plant species on native vegetation, it wasn't until the last half century that any serious effort was made to promote their removal. British botanist and presenter David Bellamy was one of the first scientists to popularise this message, starring in a 1989 television advert to explain why Clematis vitalba (AKA Old man's beard) needed eradicating. Bellamy then went on to present the tv series Moa's Ark, which drew attention to the country's unique biota and the dangers it faced from poorly managed development. 

Given his botanical background, it's perhaps not surprising that rather than see plants as the background to dramas of the animal kingdom Bellamy made them central to the ecosystem, claiming that we should put nature before culture. Again, although lacking the dynamic aspects of fauna, invasive weeds (by definition, aren't weeds just plants in the wrong place?) such as Old man's beard can gain up to ten metres in a single growing season. You only have to look around a suburban garden - mine included - to see that constant vigilance is required to remove the likes of self-seeded wattle and climbing asparagus before they take hold and smother native species.

It isn't just on land that we face this issue: freshwater systems can easily be choked by the likes of Elodea canadensis, a North American pondweed that has escaped from its ornamental aquarium environment (thanks to highly irresponsible people, of course) and been spread by boats and fishing equipment, clogging and stagnating streams and lakes. What is worrying is that it is far short of being the worst of the fifty or so non-native aquatic plants that threaten New Zealand's waterways. Considering that around three-quarters of all invasive species in this environment have a detrimental effect, it clearly makes the point that introduced flora is just not good.

So what can - and is - being done? Thanks to numerous volunteer groups, sanctuaries for rare native species (principally fauna, but occasionally flora too) are keeping invasive weeds at bay. Outside these protected environments, annual weeding programmes aim to reduce wilding pine, but the issue here is that commercial interest still maintains the upper hand. Whether for timber plantations or carbon sequestration, species such as Douglas fir continue to be planted, allowing the seed to spread to new areas far and wide on the wind. Luckily, there are numerous websites to help the public identify and  destroy pest plants; here are just some of the online resources available for New Zealanders:

Clearly, this isn't an issue that will ever go away. With most Government-led efforts focusing on pest animal species, eradicating invasive plants has been given far less support and so they remain comparatively unknown. Perhaps it would be good if schools undertook a compulsory programme, including practical work, in the identification and removal of non-native pest flora? Trapping and poisoning invasive animals can be a complex business, but weeding is comparative child's play. Everyone can help out: in effect, this is a form of citizen science that has a positive practical effect on the environment. Why not start with your garden today?


Thursday 24 September 2020

Dangerous cargo: the accidental spread of alien organisms via commercial shipping

It's often said that whichever culture and environment we grow up in is the one we consider as the norm. Whilst my great-grandparents were born before the invention of heavier-than-air flying machines, I've booked numerous long-haul flights without considering much beyond their monetary and environmental cost. Yet this familiarity with our fast and efficient global transportation network masks an unpleasant side effect: it is second only to habitat loss when it comes to endangering biodiversity.

Although many environmental campaigns focus on fossil fuels, deforestation and unsustainable agricultural practices, the (mostly inadvertent) transportation of alien plants, animals and fungi from one region to another has quietly but catastrophically reduced biodiversity in many areas of the planet.

The earliest example I recall learning about was Stephen Jay Gould's heart-felt description of the extinction of French Polynesia's partulid tree snails at the hands of introduced carnivorous snails intended to control edible snail species (which were also deliberately introduced). While the nineteenth and early twentieth centuries saw large numbers of species intentionally established in areas far from their natural territories, the past half century has seen an acceleration in equally disastrous accidental introductions as a by-product of international trade.

A potential starting point for invasion ecology as a discipline in its own right was Oxford professor Charles Elton's 1958 publication The Ecology of Invasions by Animals and Plants. The International Union for Conservation of Nature's Red List of Threatened Species followed six years later. Clearly, the negative effects of our activities were starting to become known. But has enough been done to publicise it in the intervening decades?

The Red list is the most accurate data source for regional biodiversity and the population health of all organisms known to science; yet few non-specialists seem even aware of its existence. Indeed, several decades passed after the list's creation before invasive biology became an important subject in professional ecology. Over the past thirty years the topic has seen a ten-fold increase in publications and citations - a sign of recognition if ever there was one - although mainstream media appears barely aware of its existence.

The IUCN's Invasive Species Specialist Group aids governments and organisations in planning the monitoring, containment, and where possible, destruction of invasive species. It runs the publicly-available Global Invasive Species Database, but its online presence appears to be poorly funded, or at least coordinated. Rather than a central hub there is a plethora of websites featuring varying degrees of professionalism and some distinctly out-of-date content. Perhaps clients are given direct instructions, but as a member of the public I found the ISSG sites bewildering in their variety.

Needless to say, when it does come to taking action, it can be assumed that economic imperatives such as agricultural pests take precedence over preservation of other endangered species. The only country I know of that is attempting a nation-wide eradication of most invasive animals (note: not plants and fungi) is New Zealand, with our Predator Free 2050 project. However, I'm uncertain how realistic it is. Even pre-Covid it appears to have lacked a solid funding source and now - with thirty years and counting until the deadline - there's even less chance of a comprehensive removal of numerous pest species.

What the Predator Free 2050 plan doesn't include is the multitude of plants and animals that slip through the net, so to speak: the legion of species currently invading our offshore environment. It's one thing to actually see land-based plants and animals, but the ocean is largely unknown territory to most people. With over forty thousand cargo vessels moving around the globe every year there is plenty of opportunity for organisms, especially their larval forms, to be inadvertently spread to new territories via both hulls and ballast water. Whilst Killer Algae (a slight hint there in the common name for Caulerpa taxifolia) and the Chinese mitten crab aren't as well-known as Japanese knotweed and Common myna bird they are just two of the many dangerous invaders spreading ever further from their original territories.

It isn't just marine vessels that can carry such dangerous cargo: the immense amount of plastic waste in our oceans can serve as life rafts for the propagation of alien species, albeit at the whim of currents moving rather slower than diesel power. The problem of course is that the oceans are enormous and so the only time the issue becomes known about is when an invasive organism is spotted encroaching in coastal waters. Unfortunately, marine lifeforms can't be easily dealt with using the traps and poison that work on land-based entities; indeed, international regulations seem as much concerned with the dangers of anti-fouling systems as with the issues they prevent.

In 2011 the International Maritime Organization implemented guidelines to minimise vessel biofouling as it relates to the accidental incursions of invasive marine organisms. New Zealand was the first of several nations to execute their own national strategy that turned these guidelines into mandatory practice - and take them further. In addition, New Zealand's National Institute of Water and Atmospheric Research (NIWA) runs annual surveys, particularly around ports, but otherwise their funding appears inadequate to the immensity of the task. 

It's all very well keeping track of the ever-increasing list of resident invasive species around the nation's coastline, but little has been done to remove them. With about 150 types of alien organism now in residence around New Zealand's coast and the same again in occasional visitors, NIWA has been a partner in international competitions aimed at finding pest management solutions, at least for coastal ecosystems if not the deep ocean. Obvious solutions such as scrubbing hulls would just lead to direct contamination of ports, so some new thinking is clearly required.

Of course, the use of cargo ships is unlikely to reduce any time soon. Our global marine transport network is far from in decline and many nations lack the stringent precautions that New Zealand and Australia are now implementing. It has been estimated that cleaning hulls to prevent biofouling could reduce global marine fuel consumption by 10%, so perhaps this commercial benefit may win over those reluctant to spend heavily on prevention measures. But just as fishing vessels are still getting away with immense amounts of by-kill, merchant shipping in many areas of the world appears to be a law unto self.

Preserving regional marine biota is just as critical as land-based environmental protection. Allowing species to proliferate outside their normal range can only lead to deleterious changes - and when combined with our warming, increasingly acidic oceans, this does not bode well for all life on Earth, especially a hungry Homo sapiens. Just because we humans spend most of our time on land, we cannot afford to ignore the far larger ecosystems of the seas.

Wednesday 30 October 2019

Our feline friends - not so miaowvellous after all?


I've published a few posts concerning citizen science, from the active participation in conservation-orientated projects here in New Zealand to the more passive involvement in distributed computing projects that I briefly mentioned back in 2012.

A type of public involvement in scientific research half way between these examples has been developed to utilise the human ability to match up patterns, a skill which artificial intelligence is only just beginning to replicate. One early implementation of this was the Galaxy Zoo crowdsourced project, in which volunteers examining photographs taken by robotic, Earth-based telescopes to classify galaxies. Since 2009, the Zooniverse online portal has utilised more than one million volunteers to examine data on behalf of over fifty projects, many of which are within STEM disciplines.

Although initially often used for astronomy or astrophysics programmes, crowd sourcing platforms have latterly found an important role in conservation and biodiversity research. An example is the Smithsonian Institute-sponsored eMammal, which specialises in the examination of camera trap footage to identify the locations of animal species on a scale that could not obtained by other means.

In line with the outcome of the perhaps too ambitious Predator-free 2050 programme, one project that may require the assistance of the Zooniverse volunteers is analysis of feral cat DNA from New Zealand's Auckland Island. The DNA, derived partially from fecal matter (nice), is to discover what the cats on the island are eating. Although this research aims to discover the best way to remove invasive species from Auckland Island (cats are known to predate on native seabird species) there now appears to be another issue caused by cats living near coastlines.

Over the past fifteen years a body of evidence from around the world has shown that cats are directly responsible for the deaths of marine mammals. This might sound rather unlikely, but the microbial culprit, Toxoplasma gondii, is only found in the digestive system of cats. Both feral and domestic cats that catch and eat infected rodents or birds can acquire the parasite and pass it by their fecal matter into the wider environment via fresh water run-off or sewage outfalls. Eventually, it enters the marine food chain, reaching the apex in the former of cetaceans and pinnipeds among others.

Species such as sea otters, seals, and dolphins have been killed by toxoplasmosis, according to autopsies of specimens washed up on seashores as far apart as New Zealand and the USA. Increasing temperatures (thanks again, man-made climate change) and greater rainfall can spread toxoplasmosis even further. In addition to direct contamination from fecal matter, cat owners who flush cat litter down the toilet can also start the highly resilient microbes on a journey via sewer networks to the ocean. Among the New Zealand species proven to have been killed by infection are the critically endangered Maui dolphin and locally vulnerable Hector’s dolphin, so there is definitely a need for some prompt action.

It isn't just a case of the top marine predators eating infected fish or squid: sea mammals could swallow oocysts (basically, the protozoan equivalent of a fertilised egg) directly from water. Only now that Maui dolphins are falling victim to the parasite is the story of this deadly microbe becoming better known. Not incidentally, our species can also become ill with toxoplasmosis due to exposure to cat feces, with serious consequences for babies born to infected mothers and to people with compromised immune systems. In addition to the other potential dangers from the likes of Salmonella, Listeria and E. coli, the recent fad for 'raw' (i.e. unpasteurised) milk could lead to a far higher rate of toxoplasmosis in humans.

What can be done? Well, cat owners could stop flushing kitty litter down their toilets for a start. Is it a case that there are just too many cats in the world? Some recent reports claim that Homo sapiens and their domesticated species constitute 96% of the global mammal biomass. As for cat numbers, an estimate last year suggested that there are six hundred million pet cats and the same number of feral individuals worldwide.

Is this just too many? I admit that I'm fairly biased as it is: a few cat owners I know here in Auckland have pets that regularly kill skinks and it's only luck that these are invasive rainbow skinks rather than rare native species. When it comes to the likes of the last 55 Maui dolphins falling prey to a disease spread by an extremely common domesticated species, I'd rather be over-zealous than over-cautious in developing a solution. As far as I can see, the best control methods would be a vast reduction in cat numbers or the development of an innoculation for our feline friends that can kill the parasite. Somehow I doubt either course of action is likely, which means a far from purrfect method would be to educate cat owners as to how to minimise the spread of Toxoplasma gondii. So if you are a cat owner, or know of one, I guess this could be your time to shine...

Monday 11 February 2019

The Square Kilometre Array: is it the wrong big science for New Zealand?

I've previously written about the problems besetting some mega-budget science projects and the notion that perhaps they should lose precedence to smaller programmes with quicker returns to both science and society. Of course there are advantages to long-term international STEM collaboration, including social, economic and political benefits, but there is a good case for claiming that projects are sometimes initiated without a full appreciation of the details.

Take for example, the Square Kilometre Array or SKA, the largest science project New Zealand has ever been involved with. Headquartered at the UK's Jodrell Bank Observatory (incidentally, I've been there a few times and it's well worth a visit if you're in the vicinity), twelve key nations are collaborating to construct two main arrays, one in Australia and the other in South Africa and some of its neighbours. The combined arrays will have a sensitivity fifty times greater than previous radio telescopes, allowing them to survey the sky far faster than has been done before and look back in time much earlier than current instruments.

But such paradigm-shifting specifications come with a very high price tag – and the funding sources are yet to be finalised. The €1.8 billion project is scheduled to start Phase 1 construction in 2024 and aims to begin observations four years later. Research will include a wide range of fundamental astrophysical questions, from exploring the very early universe only 300,000 years after the Big Bang to testing general relativity, gaining information on dark energy and even some SETI research.

The New Zealand contribution is organised via the Australia-New Zealand SKA Coordination Committee (ANZSCC) and is geared towards data processing and storage. The Central Signal Processor and Science Data Processor are fundamental components of the project, since the radio telescopes are expected to generate more data than the world currently stores.  As well as closer collaboration between the scientists and engineers of various nations, one of the aims of SKA is to become a source of public science education, something I have repeatedly pointed out is in desperate need of improvement.

So if this all seems so promising, why has the New Zealand Government announced that it may pull back from committing the outstanding NZ$23 million (equal to less than 10% of Australia's funding)? To date, the country has paid less than NZ$3 million. In 2015 I discussed the danger of the country falling behind in cutting-edge STEM research and Rocket Lab aside (which is after all, an American-owned company despite its kiwi founder) the situation hasn't really changed. so why did Research, Science and Innovation Minister Megan Woods declare this potential about turn, which may well relegate New Zealand to associate membership status?

The initial answer appears to be one of pure economics. Although the project is generating development of world-class computer technology, a report has questioned the long-term benefits from investing such comparatively large sums of public money. India is already an associate member while Germany has been considering a similar downgrade for some years and Canada may follow suit. The project is already  a decade behind schedule and New Zealand had hoped to be an array-hosting nation but lost out due to a lower bid from South Africa. SKA is run by a same-name not-for-profit organisation and so presumably any financial rewards are of a secondary nature (perhaps along the lines of patents or new technologies that can be repurposed elsewhere).

Interestingly, New Zealand's science community has been divided on the issue. While Auckland University of Technology and Victoria University of Wellington have objected to the downgrade, the university of Auckland's head of physics Richard Easther has support the Ministry of Business, Innovation and Employment (MBIE) decision, saying that far from providing financial and long-term science benefits (in both applied computing and astrophysical data), SKA is a white elephant, hinting that it might well be obsolete by the time it starts gathering data.

Another University of Auckland astrophysicist, Dr Nick Rattenbury, argues that the nation's public funding infrastructure is currently too primitive for it to become involved in such international mega-budget STEM projects. I simply don't know enough detail to question whether such adages as you need to speculate in order to accumulate apply here; it's clearly a well-thought out programme, unlike say the politically-motivated yet vague and probably unworkable Predator Free 2050 scheme.

If SKA was committed to solving an immediate practical problem in the fields of say, environmental degradation, food and water production, or medicine, I would probably have no hesitation in supporting it whole-heartedly, regardless of the cost to the public purse. But the universe has been around almost fourteen billion years, so I for one don't mind if it holds onto a few of its fundamental secrets for a little while longer.