Showing posts with label Frankenfoods. Show all posts
Showing posts with label Frankenfoods. Show all posts

Friday 11 January 2019

Hot, cold or in between: thermoregulation and public misunderstanding of science

I recently spotted an intriguing paleontology article concerning the 180 million year old fossil remains of an ichthyosaur, a marine reptile from the Early Jurassic. The beastie, belonging to the genus Stenopterygius,  is so well preserved that it shows coloration patterns (if not the colours themselves) on patches of scaleless skin, as well as a thick layer of insulating fat or blubber. What makes the latter so intriguing is that reptiles just aren't meant to have blubber. Then again, like some snakes and skinks today, ichthyosaurs must have given birth to live young. Thus the gap between reptiles and mammals surely grows ever smaller?

This conundrum touches on some interesting issues about the public's knowledge of science. Several times I've commented on what Richard Dawkins calls the "tyranny of the discontinuous mind", which is the way in which we use categorisation to make it easier to understand the world. It might seem that this is the very essence of some aspects of science, as in New Zealand physicist Ernest Rutherford's famously ungenerous quote that "Physics is the only real science. The rest are just stamp collecting." Indeed, examination of the life and work of many early botanists for example might appear to verify this statement. However, there needs to be an understanding that science requires a flexibility of mind set, a fundamental scientific process being the discarding of a pet theory in favour of a more accurate one.

I'm sure I've remarked countless times - again, echoing Professor Dawkins - that science is in this respect the antithesis of most religions, which set key ideas into stone and refuse to accept any challenges towards them. In the case of the blubber-filled Stenopterygius, it is still a reptile, albeit one that had many of the attributes of mammals. As for the latter, from our pre-school picture books onwards we tend to think of the main mammalian subclass, the placentals, but there are two smaller subclasses: the marsupials, such as the kangaroo; and the monotremes, for example the duck-billed platypus. It has been known since the 1880s that the platypus lays eggs rather than giving birth to live young, a characteristic it shares with the other four monotreme species alive today. In addition, their body temperature is five degrees Celsius lower than that of placental mammals, part of a suite of features presumably retained from their mammal-like reptile ancestors.

Even so, these traits do not justify the comment made by host Stephen Fry in a 2005 episode of the BBC TV quiz show QI, when he claimed that marsupials are not mammals! Richard Dawkins has frequently pointed out that it would be unacceptable to have a similar level of ignorance about the arts as there is on scientific matters, with this being a clear case in point as regards the cultured and erudite Mr Fry. Yet somehow, much of the general public has either a lack or a confusion concerning basic science. Indeed, only  last week I listened to a BBC Radio topical comedy show in which none of the panel members could work out why one face of the moon is always hidden from our view. Imagine the response if it had been a basic lack of knowledge in the arts and literature, for example if an Oxbridge science graduate had claimed that Jane Austen had written Hamlet!

Coming back to the ichthyosaur, one thing we may have learnt as a child is that some animals are warm-blooded and others cold-blooded. This may be useful as a starting point but it is an overly-simplistic and largely outmoded evaluation of the relevant biology; the use of such binary categorisation is of little use after primary school age. In fact, there is series of steps from endothermic homeotherms (encompassing most mammals and birds) to ectothermic poikilotherms (most species of fish, reptiles, amphibians and invertebrates), with the former metabolic feature having evidently developed from the latter.

Ichthyosaurs are likely to have had one of the intermediate metabolisms, as may have been the case for some species of dinosaurs, possibly the smaller, feathered, carnivorous theropods. Likewise, some tuna and shark species are known to be able to produce heat internally, but in 2015 researchers at the US National Marine Fisheries Service announced that five species of the opah fish were found to be whole-body endotherms. Clearly, the boundaries between us supposedly higher mammals and everything else is far less secure than we had previously believed.

At times, science terminology might appear as too abstruse, too removed from the everyday and of little practical use outside of a pub quiz, but then does being able to critique Shakespeare or Charles Dickens help to reduce climate change or create a cure for cancer? Of course we should strive to be fully-rounded individuals, but for too long STEM has been side-lined or stereotyped as too difficult or irrelevant when compared with the humanities.

Lack of understanding of the subtleties and gradations (as opposed to clearly defined boundaries) in science make it easy for anti-science critics to generate public support. Ironically, this criticism tends to take one of two clearly opposing forms: firstly, that science is mostly useless - as epitomised by the Ig Nobel Prize; and alternatively, that it leads to dangerous inventions, as per the tabloid scare-mongering around genetically modified organisms (GMOs) or 'Frankenfoods' as they are caricatured.

Being able to discern nuanced arguments such as the current understanding of animal thermoregulation is a useful tool for all of us. Whether it is giving the public a chance to vote in scientifically-related referendums or just arming them so as to avoid quack medicine, STEM journalism needs to improve beyond the lazy complacency that has allowed such phrases as 'warm-blooded', 'living fossil', 'ice age' and 'zero gravity' to be repeatedly misused. Only then will science be seen as the useful, relevant and above all a much more approachable discipline than it is currently deemed to be.

Monday 30 January 2017

Hold the back page: 5 reasons science journalism can be bad for science

Although there's an extremely mixed quality to television science documentaries these days (with the Discovery Channel firmly at the nadir) - and in stark contrast to the excellent range of international radio programmes available - the popular press bombards us daily with news articles discussing science and technology. Both traditional print and online publications reach an enormous percentage of the public who would never otherwise read stories connected to STEM (Science, Technology, Engineering and Mathematics). Therefore these delivery channels and the journalists who write material for them face an immense challenge: how to make science accessible and comprehensible as well as interesting. How well they are doing can be judged by the general public's attitude towards the subject...which is currently not that great.

In November 2016 Oxford Dictionaries stated that their Word of the Year was 'post-truth', which refers to 'circumstances in which objective facts are less influential...than appeals to emotion and personal belief.' Clearly, this is the antithesis of how good science should proceed. Combined with the enormous output from social media, which gives the impression that anyone's opinion is as valid as a trained professionals and you can see why things aren't going well for critical thought in general. Did you know that a Google search for 'flat earth' generates over 12 million results? What a waste of everyone's time and data storage! As they said about Brexit: pride and prejudice has overcome sense and sensibility. Here then are five reasons why popular science journalism, mostly covering general news publications but occasionally dipping into specialist magazines too, can be detrimental to the public's attitude towards science.

1) Most science writers on daily newspapers or non-specialist periodicals don't have any formal science training. Evolutionary biologist Stephen Jay Gould once pointed out that journalists have a tendency to read summaries rather than full reports or scientific papers, thus distancing themselves from the original material before they even write about it. The problem is that an approach that works for the humanities may not be suitable for science stories. We're not critiquing movies or gourmet cuisine, folks!

As an humorous example of where a lack of research has led to a prevalent error,  a 1984 April Fools' Day spoof research paper by American journalism student Diana ben-Aaron was published in 350 newspapers before the original publisher admitted that Retrobreeding the Woolly Mammoth was phoney. One of the facts that ben-Aaron made up (and still remains unknown) is that woolly mammoth had fifty-eight chromosomes. This number is now ubiquitous across the World Wide Web from Wikipedia to the Washington Post, although I'm pleased to see that the National Geographic magazine website correctly states the situation. Clearly, anyone who follows the President Trump approach that "All I know is what's on the Internet" isn't going to get the correct answer.

This isn't to say that even a scientifically-trained journalist would understand stories from all sectors: the pace of advance in some fields is so fast than no-one can afford the time to maintain a sophisticated understanding of areas beyond their own specialism. But it isn't just particular research that is a concern: general concepts and methodology can be ignored or misunderstood; whilst a lack of mathematical training can easily restrict an understanding of how statistics work, with error bars and levels of significance often overlooked or misrepresented.

Related to this ambiguity and margin for error, journalists love to give definitive explanations, which is where there can be serious issues. Science is a way of finding ever more accurate explanations for the universe, not a collection of unchangeable laws (excepting the Second Law of Thermodynamics, of course). Therefore today's breakthrough may be reversed by tomorrow's report of sample contamination, unrepeatable results or other failure. It's rarely mentioned that scientists are willing to live with uncertainty - it's a key component of the scientific enterprise, after all. Yet in the event of an about turn or setback it's usually the scientists involved who get blamed, with accusations ranging from wasting public money to taking funding from something more worthwhile. Meanwhile, the journalist who wrote the original distorted account rarely gets held responsible. As for the one-sided scare stories such as nicknaming GM crops as 'Frankenfoods', this lowers what should be a serious public debate to an infantile level extremely difficult to overthrow.

2) How many science documentaries have you seen where the narrator says something along the lines of “and then the scientists found something that stunned them”? Such is the nature of story-making today, where audiences are deemed to have such short attention spans that every five minutes they require either a summary of the last ten minutes or a shock announcement. This week I saw a chart about bias within major news organisations: both CNN and USA Today were labelled as 'sensational or clickbait'. I've repeatedly read about scientists who were prompted by journalists towards making a controversial or sensational quote, which if published would distort their work but provide a juicy headline. It seems that limiting hyperbole is a critical skill for any scientist being interviewed.

Journalists don't owe invertebrate paleontologists, for example, a free lunch but there is a lot of good professional and occasionally amateur science being conducted away from the spotlight. Concentrating on the more controversial areas of research does little to improve science in the public's eye. Even reporting of such abstract (but mega-budget) experiments as the Large Hadron Collider seems to be based around headlines about 'The God Particle' (nearly six million results on Google) A.K.A. Higgs Boson (less than two million results). Next thing, they'll be nicknaming the LHC ‘The Hammer of Thor' or something equally cretinous. Although come to think of it…

The World Wide Web is far worse than printed news, with shock headlines ('It Was The Most XXX Ever Found - "It Blew My Mind," Expert Says') and over-inflated summaries that would make even lowbrow tabloids blush. Even specialist periodicals are not immune to the syndrome, with New Scientist magazine being particularly at fault. In 2009 it published the silly headline 'Darwin was wrong' which drew the ire of many biologists whilst providing a new form of ammunition for creationists. In 2012 their special 'The God Issue' turned out to contain less than fifteen pages on religion - but then it is meant to be a popular science periodical! In this vein the Ig Nobels seem to get more attention than the Nobel Prizes as journalists look for a quirky man-bites-dog angle to convince the public that a science story is worth reading.

3) Talking of which, journalists want to reach the widest possible audience and therefore looking for human angle is a prominent way to lure in readers. The two most recent Brian Cox television documentary series, Human Universe and Forces of Nature have concentrated on stories around families and children, with the science elements being interwoven almost effortlessly into the narrative.

In print and digital formats this bias means that the focus is frequently on articles that might directly affect humanity, especially medical, agricultural and environmental stories. This puts an unbalanced emphasis on certain areas of science and technology, leaving other specialisations largely unreported. This might not appear bad in itself, but lack of visibility can cause difficulties when it comes to maintaining public funding or attracting private philanthropy for less commercial and/or more theoretical science projects.

Another method used to make science more palatable is to concentrate on individual geniuses rather than team efforts. I assume only a very small proportion of the public know that theoretical physicists do their best work before they are thirty years old, yet the seventy-five year old Stephen Hawking (whose name is now a trademark, no less) is quoted almost every week as if he were Moses. He's well worth listening to but even so, Professor Hawking seems have become a spokesperson for almost any aspect of science the media want a quote on.

4) With competition tougher than ever thanks to social media and smartphone photography, journalists face ever tighter deadlines to publish before anyone else. This can obviously lead to a drop in accuracy, with even basic fact-checking sometimes lacking. For example, a year or two ago I sent a tweet to the British paleopathologist and presenter Dr Alice Roberts that the BBC Science and Environment News web page stated humans were descended from chimpanzees! She must have contacted them fairly rapidly as the content was corrected soon after, but if even the BBC can make such basic blunders, what hope is there for less reputable news-gathering sources? As with much of contemporary business, the mentality seems to be to get something into market as quick as possible and if it happens to be a smartphone that frequently catches fire, we'll deal with that one later. The Samsung Galaxy Note 7's recent debacle is the gadget equivalent of the BBC error: beating the opposition takes precedence over exactitude.

It's one to thing to define science as striving towards more accurate descriptions of aspects of reality rather than being a series of set-in-stone commandments, but publishing incorrect details for basic, well-established facts can only generate mistrust of journalists by both scientific professionals and members of the public who discover the mistake. Surely there's time for a little cross-checking with reference books and/or websites in order to prevent the majority of these howlers? Having said that, I find it scary that a major media organisation can commit such blunders. I wonder what the outcry would be if the BBC's Entertainment and Arts News page claimed that Jane Austen wrote Hamlet?

5) Finally, there's another explanation that has less to do with the science journalists themselves and more with what constitutes newsworthy stories. Negativity is the key here, and as such science news is swept along with it. For example, the BBC Science and Environment News web page currently has three articles on climate change and animal extinctions, an expensive project technology failure, earthquake news and a pharmaceutical story. Like a lot of political reports, those concerning STEM subjects concentrate on the bad side of the fence. Unfortunately, the dog-bites-man ordinariness of, for example ‘Project X succeeds in finding something interesting' usually precludes it from being deemed media-worthy. The ethos seems to be either find a unique angle or publish something pessimistic.

One tried and tested method to capture attention is to concentrate on scandal and error: science is just as full of problems as any other aspect of humanity. Of course it is good to examine the failure of high-tech agriculture that led to the UK's BSE 'mad cow' disease outbreaks in the 1980s and 90s, but the widespread dissemination of the supposed link between MMR and autism has caused immense damage around the world, thanks to a single report being unthinkingly conveyed as rock-hard evidence.

Bearing in mind that journalism is meant to turn a profit, perhaps we shouldn't be surprised at how misrepresented scientific research can be. It's difficult enough to find the most objective versions of reality, considering all the cognitive bias in these post-truth times. There are no obvious answers as to how to resolve the issue of poor quality science reporting without either delaying publishing and/or employing scientifically-trained staff. The market forces that drive journalism unfortunately mean that STEM stories rarely do science justice and often promote a negative attitude among the rest of mankind. Which is hardly what we need right now!