Showing posts with label woolly mammoth. Show all posts
Showing posts with label woolly mammoth. Show all posts

Wednesday, 13 June 2018

Debunking DNA: A new search for the Loch Ness monster

I was recently surprised to read that a New Zealand genomics scientist, Neil Gemmell of Otago University, is about to lead an international team in the search for the Loch Ness monster. Surely, I thought, that myth has long since been put to bed and is only something exploited for the purposes of tourism? I remember some years ago that a fleet of vessels using side-sweeping sonar had covered much of the loch without discovering anything conclusive. When combined with the fact that the most famous photograph is a known fake and the lack of evidence from the plethora of tourist cameras (never mind those of dedicated Nessie watchers) that have convened on the spot, the conclusion seems obvious.

I've put together a few points that don't bode well for the search, even assuming that Nessie is a 'living fossil' (à la coelacanth) rather than a supernatural creature; the usual explanation is a cold water-adapted descendant of a long-necked plesiosaur - last known to have lived in the Cretaceous Period:
  1. Loch Ness was formed by glacial action around 10,000 years ago, so where did Nessie come from? 
  2. Glacial action implies no underwater caves for hiding in
  3. How can a single creature maintain a long-term population (the earliest mentions date back thirteen hundred years)? 
  4. What does such a large creature eat without noticeably reducing the loch's fish population?
  5. Why have no remains ever been found, such as large bones, even on sonar?
All in all, I didn't think much of the expedition's chances and therefore I initially thought that the new research would be a distinct waste of money that could be much better used elsewhere in Scotland. After all, the Shetland seabird population is rapidly decreasing thanks to over-fishing, plastic pollution and loss of plankton due to increasing ocean temperatures. It would make more sense to protect the likes of puffins (who have suffered a 98% decline over the past 20 years), along with guillemots and kittiwakes amongst others.

However, I then read that separate from the headline-grabbing monster hunt, the expedition's underlying purpose concerns environmental DNA sampling, a type of test never before used at Loch Ness. Gemmell's team have proffered a range of scientifically valid reasons for their project:
  1. To survey the loch's ecosystem, from bacteria upwards 
  2. Demonstrate the scientific process to the public (presumably versus all the pseudoscientific nonsense surrounding cryptozoology)
  3. Test for trace DNA from potential but realistic causes of 'monster' sightings, such as large sturgeon or catfish 
  4. Understand local biodiversity with a view to conservation, especially as regards the effect caused by invasive species such as the Pacific pink salmon. 
Should the expedition find any trace of reptile DNA, this would of course prove the presence of something highly unusual in the loch. Gemmell has admitted he doubts they will find traces of any monster-sized creatures, plesiosaur or otherwise, noting that the largest unknown species likely to be found are bacteria. Doesn't it seem strange though that sometimes the best way to engage the public - and gain funding - for real science is to use what at best could be described as pseudoscience?

Imagine if NASA could only get funding for Earth observation missions by including the potential to prove whether our planet was flat or not? (Incidentally, you might think a flat Earth was just the territory of a few nutbars, but a poll conducted in February this year suggests that fully two percent of Americans are convinced the Earth is a disk, not spherical).

Back to reality. Despite the great work of scientists who write popular books and hold lectures on their area of expertise, it seems that the media - particularly Hollywood - are the primary source of science knowledge to the general public. Hollywood's version of de-extinction science, particularly for ancient species such as dinosaurs, seems to be far better known than the relatively unglamorous reality. Dr Beth Shapiro's book How to clone a mammoth for example is an excellent introduction to the subject, but would find it difficult to compete along side the adventures of the Jurassic World/Park films.

The problem is that many if not most people want to believe in a world that is more exciting than their daily routine would suggest, with cryptozoology offering itself as an alternative to hard science thanks to its vast library of sightings over the centuries. Of course it's easy to scoff: one million tourists visit Loch Ness each year but consistently fail to find anything; surely in this case absence of evidence is enough to prove evidence of absence?

The Loch Ness monster is of course merely the tip of the mythological creature iceberg. The Wikipedia entry on cryptids lists over 170 species - can they all be just as suspect? The deep ocean is the best bet today for large creatures new to science. In a 2010 post I mentioned that the still largely unexplored depths could possibly contain unknown megafauna, such as a larger version of the oarfish that could prove to be the fabled sea serpent.

I've long had a fascination with large creatures, both real (dinosaurs, of course) and imaginary. When I was eight years old David Attenborough made a television series called Fabulous Animals and I had the tie-in book. In a similar fashion to the new Loch Ness research project, Attenborough used the programmes to bring natural history and evolutionary biology to a pre-teen audience via the lure of cryptozoology. For example, he discussed komodo dragons and giant squid, comparing extant megafauna to extinct species such as woolly mammoth and to mythical beasts, including the Loch Ness Monster.

A few years later, another television series that I avidly watched covered some of the same ground, namely Arthur C. Clarke's Mysterious World. No less than four episodes covered submarine cryptozoology, including the giant squid, sea serpents and of course Nessie him (or her) self. Unfortunately the quality of such programmes has plummeted since, although as the popularity of the (frankly ridiculous) seven-year running series Finding Bigfoot shows, the public have an inexhaustible appetite for this sort of stuff.

I've read that it is estimated only about ten percent of extinct species have been discovered in the fossil record, so there are no doubt some potential surprises out there (Home floresiensis, anyone?) However, the evidence - or lack thereof - seems firmly stacked against the Loch Ness monster. What is unlikely though is that the latest expedition will dampen the spirits of the cryptid believers. A recent wolf-like corpse found in Montana, USA, may turn out to be coyote-wolf hybrid, but this hasn't stopped the Bigfoot and werewolf fans from spreading X-Files style theories across the internet. I suppose it’s mostly harmless fun, and if Professor Gemmell’s team can spread some real science along the way, who am I to argue with that? Long live Nessie!

Monday, 30 January 2017

Hold the back page: 5 reasons science journalism can be bad for science

Although there's an extremely mixed quality to television science documentaries these days (with the Discovery Channel firmly at the nadir) - and in stark contrast to the excellent range of international radio programmes available - the popular press bombards us daily with news articles discussing science and technology. Both traditional print and online publications reach an enormous percentage of the public who would never otherwise read stories connected to STEM (Science, Technology, Engineering and Mathematics). Therefore these delivery channels and the journalists who write material for them face an immense challenge: how to make science accessible and comprehensible as well as interesting. How well they are doing can be judged by the general public's attitude towards the subject...which is currently not that great.

In November 2016 Oxford Dictionaries stated that their Word of the Year was 'post-truth', which refers to 'circumstances in which objective facts are less influential...than appeals to emotion and personal belief.' Clearly, this is the antithesis of how good science should proceed. Combined with the enormous output from social media, which gives the impression that anyone's opinion is as valid as a trained professionals and you can see why things aren't going well for critical thought in general. Did you know that a Google search for 'flat earth' generates over 12 million results? What a waste of everyone's time and data storage! As they said about Brexit: pride and prejudice has overcome sense and sensibility. Here then are five reasons why popular science journalism, mostly covering general news publications but occasionally dipping into specialist magazines too, can be detrimental to the public's attitude towards science.

1) Most science writers on daily newspapers or non-specialist periodicals don't have any formal science training. Evolutionary biologist Stephen Jay Gould once pointed out that journalists have a tendency to read summaries rather than full reports or scientific papers, thus distancing themselves from the original material before they even write about it. The problem is that an approach that works for the humanities may not be suitable for science stories. We're not critiquing movies or gourmet cuisine, folks!

As an humorous example of where a lack of research has led to a prevalent error,  a 1984 April Fools' Day spoof research paper by American journalism student Diana ben-Aaron was published in 350 newspapers before the original publisher admitted that Retrobreeding the Woolly Mammoth was phoney. One of the facts that ben-Aaron made up (and still remains unknown) is that woolly mammoth had fifty-eight chromosomes. This number is now ubiquitous across the World Wide Web from Wikipedia to the Washington Post, although I'm pleased to see that the National Geographic magazine website correctly states the situation. Clearly, anyone who follows the President Trump approach that "All I know is what's on the Internet" isn't going to get the correct answer.

This isn't to say that even a scientifically-trained journalist would understand stories from all sectors: the pace of advance in some fields is so fast than no-one can afford the time to maintain a sophisticated understanding of areas beyond their own specialism. But it isn't just particular research that is a concern: general concepts and methodology can be ignored or misunderstood; whilst a lack of mathematical training can easily restrict an understanding of how statistics work, with error bars and levels of significance often overlooked or misrepresented.

Related to this ambiguity and margin for error, journalists love to give definitive explanations, which is where there can be serious issues. Science is a way of finding ever more accurate explanations for the universe, not a collection of unchangeable laws (excepting the Second Law of Thermodynamics, of course). Therefore today's breakthrough may be reversed by tomorrow's report of sample contamination, unrepeatable results or other failure. It's rarely mentioned that scientists are willing to live with uncertainty - it's a key component of the scientific enterprise, after all. Yet in the event of an about turn or setback it's usually the scientists involved who get blamed, with accusations ranging from wasting public money to taking funding from something more worthwhile. Meanwhile, the journalist who wrote the original distorted account rarely gets held responsible. As for the one-sided scare stories such as nicknaming GM crops as 'Frankenfoods', this lowers what should be a serious public debate to an infantile level extremely difficult to overthrow.

2) How many science documentaries have you seen where the narrator says something along the lines of “and then the scientists found something that stunned them”? Such is the nature of story-making today, where audiences are deemed to have such short attention spans that every five minutes they require either a summary of the last ten minutes or a shock announcement. This week I saw a chart about bias within major news organisations: both CNN and USA Today were labelled as 'sensational or clickbait'. I've repeatedly read about scientists who were prompted by journalists towards making a controversial or sensational quote, which if published would distort their work but provide a juicy headline. It seems that limiting hyperbole is a critical skill for any scientist being interviewed.

Journalists don't owe invertebrate paleontologists, for example, a free lunch but there is a lot of good professional and occasionally amateur science being conducted away from the spotlight. Concentrating on the more controversial areas of research does little to improve science in the public's eye. Even reporting of such abstract (but mega-budget) experiments as the Large Hadron Collider seems to be based around headlines about 'The God Particle' (nearly six million results on Google) A.K.A. Higgs Boson (less than two million results). Next thing, they'll be nicknaming the LHC ‘The Hammer of Thor' or something equally cretinous. Although come to think of it…

The World Wide Web is far worse than printed news, with shock headlines ('It Was The Most XXX Ever Found - "It Blew My Mind," Expert Says') and over-inflated summaries that would make even lowbrow tabloids blush. Even specialist periodicals are not immune to the syndrome, with New Scientist magazine being particularly at fault. In 2009 it published the silly headline 'Darwin was wrong' which drew the ire of many biologists whilst providing a new form of ammunition for creationists. In 2012 their special 'The God Issue' turned out to contain less than fifteen pages on religion - but then it is meant to be a popular science periodical! In this vein the Ig Nobels seem to get more attention than the Nobel Prizes as journalists look for a quirky man-bites-dog angle to convince the public that a science story is worth reading.

3) Talking of which, journalists want to reach the widest possible audience and therefore looking for human angle is a prominent way to lure in readers. The two most recent Brian Cox television documentary series, Human Universe and Forces of Nature have concentrated on stories around families and children, with the science elements being interwoven almost effortlessly into the narrative.

In print and digital formats this bias means that the focus is frequently on articles that might directly affect humanity, especially medical, agricultural and environmental stories. This puts an unbalanced emphasis on certain areas of science and technology, leaving other specialisations largely unreported. This might not appear bad in itself, but lack of visibility can cause difficulties when it comes to maintaining public funding or attracting private philanthropy for less commercial and/or more theoretical science projects.

Another method used to make science more palatable is to concentrate on individual geniuses rather than team efforts. I assume only a very small proportion of the public know that theoretical physicists do their best work before they are thirty years old, yet the seventy-five year old Stephen Hawking (whose name is now a trademark, no less) is quoted almost every week as if he were Moses. He's well worth listening to but even so, Professor Hawking seems have become a spokesperson for almost any aspect of science the media want a quote on.

4) With competition tougher than ever thanks to social media and smartphone photography, journalists face ever tighter deadlines to publish before anyone else. This can obviously lead to a drop in accuracy, with even basic fact-checking sometimes lacking. For example, a year or two ago I sent a tweet to the British paleopathologist and presenter Dr Alice Roberts that the BBC Science and Environment News web page stated humans were descended from chimpanzees! She must have contacted them fairly rapidly as the content was corrected soon after, but if even the BBC can make such basic blunders, what hope is there for less reputable news-gathering sources? As with much of contemporary business, the mentality seems to be to get something into market as quick as possible and if it happens to be a smartphone that frequently catches fire, we'll deal with that one later. The Samsung Galaxy Note 7's recent debacle is the gadget equivalent of the BBC error: beating the opposition takes precedence over exactitude.

It's one to thing to define science as striving towards more accurate descriptions of aspects of reality rather than being a series of set-in-stone commandments, but publishing incorrect details for basic, well-established facts can only generate mistrust of journalists by both scientific professionals and members of the public who discover the mistake. Surely there's time for a little cross-checking with reference books and/or websites in order to prevent the majority of these howlers? Having said that, I find it scary that a major media organisation can commit such blunders. I wonder what the outcry would be if the BBC's Entertainment and Arts News page claimed that Jane Austen wrote Hamlet?

5) Finally, there's another explanation that has less to do with the science journalists themselves and more with what constitutes newsworthy stories. Negativity is the key here, and as such science news is swept along with it. For example, the BBC Science and Environment News web page currently has three articles on climate change and animal extinctions, an expensive project technology failure, earthquake news and a pharmaceutical story. Like a lot of political reports, those concerning STEM subjects concentrate on the bad side of the fence. Unfortunately, the dog-bites-man ordinariness of, for example ‘Project X succeeds in finding something interesting' usually precludes it from being deemed media-worthy. The ethos seems to be either find a unique angle or publish something pessimistic.

One tried and tested method to capture attention is to concentrate on scandal and error: science is just as full of problems as any other aspect of humanity. Of course it is good to examine the failure of high-tech agriculture that led to the UK's BSE 'mad cow' disease outbreaks in the 1980s and 90s, but the widespread dissemination of the supposed link between MMR and autism has caused immense damage around the world, thanks to a single report being unthinkingly conveyed as rock-hard evidence.

Bearing in mind that journalism is meant to turn a profit, perhaps we shouldn't be surprised at how misrepresented scientific research can be. It's difficult enough to find the most objective versions of reality, considering all the cognitive bias in these post-truth times. There are no obvious answers as to how to resolve the issue of poor quality science reporting without either delaying publishing and/or employing scientifically-trained staff. The market forces that drive journalism unfortunately mean that STEM stories rarely do science justice and often promote a negative attitude among the rest of mankind. Which is hardly what we need right now!