Showing posts with label Higgs Boson. Show all posts
Showing posts with label Higgs Boson. Show all posts

Monday 30 January 2017

Hold the back page: 5 reasons science journalism can be bad for science

Although there's an extremely mixed quality to television science documentaries these days (with the Discovery Channel firmly at the nadir) - and in stark contrast to the excellent range of international radio programmes available - the popular press bombards us daily with news articles discussing science and technology. Both traditional print and online publications reach an enormous percentage of the public who would never otherwise read stories connected to STEM (Science, Technology, Engineering and Mathematics). Therefore these delivery channels and the journalists who write material for them face an immense challenge: how to make science accessible and comprehensible as well as interesting. How well they are doing can be judged by the general public's attitude towards the subject...which is currently not that great.

In November 2016 Oxford Dictionaries stated that their Word of the Year was 'post-truth', which refers to 'circumstances in which objective facts are less influential...than appeals to emotion and personal belief.' Clearly, this is the antithesis of how good science should proceed. Combined with the enormous output from social media, which gives the impression that anyone's opinion is as valid as a trained professionals and you can see why things aren't going well for critical thought in general. Did you know that a Google search for 'flat earth' generates over 12 million results? What a waste of everyone's time and data storage! As they said about Brexit: pride and prejudice has overcome sense and sensibility. Here then are five reasons why popular science journalism, mostly covering general news publications but occasionally dipping into specialist magazines too, can be detrimental to the public's attitude towards science.

1) Most science writers on daily newspapers or non-specialist periodicals don't have any formal science training. Evolutionary biologist Stephen Jay Gould once pointed out that journalists have a tendency to read summaries rather than full reports or scientific papers, thus distancing themselves from the original material before they even write about it. The problem is that an approach that works for the humanities may not be suitable for science stories. We're not critiquing movies or gourmet cuisine, folks!

As an humorous example of where a lack of research has led to a prevalent error,  a 1984 April Fools' Day spoof research paper by American journalism student Diana ben-Aaron was published in 350 newspapers before the original publisher admitted that Retrobreeding the Woolly Mammoth was phoney. One of the facts that ben-Aaron made up (and still remains unknown) is that woolly mammoth had fifty-eight chromosomes. This number is now ubiquitous across the World Wide Web from Wikipedia to the Washington Post, although I'm pleased to see that the National Geographic magazine website correctly states the situation. Clearly, anyone who follows the President Trump approach that "All I know is what's on the Internet" isn't going to get the correct answer.

This isn't to say that even a scientifically-trained journalist would understand stories from all sectors: the pace of advance in some fields is so fast than no-one can afford the time to maintain a sophisticated understanding of areas beyond their own specialism. But it isn't just particular research that is a concern: general concepts and methodology can be ignored or misunderstood; whilst a lack of mathematical training can easily restrict an understanding of how statistics work, with error bars and levels of significance often overlooked or misrepresented.

Related to this ambiguity and margin for error, journalists love to give definitive explanations, which is where there can be serious issues. Science is a way of finding ever more accurate explanations for the universe, not a collection of unchangeable laws (excepting the Second Law of Thermodynamics, of course). Therefore today's breakthrough may be reversed by tomorrow's report of sample contamination, unrepeatable results or other failure. It's rarely mentioned that scientists are willing to live with uncertainty - it's a key component of the scientific enterprise, after all. Yet in the event of an about turn or setback it's usually the scientists involved who get blamed, with accusations ranging from wasting public money to taking funding from something more worthwhile. Meanwhile, the journalist who wrote the original distorted account rarely gets held responsible. As for the one-sided scare stories such as nicknaming GM crops as 'Frankenfoods', this lowers what should be a serious public debate to an infantile level extremely difficult to overthrow.

2) How many science documentaries have you seen where the narrator says something along the lines of “and then the scientists found something that stunned them”? Such is the nature of story-making today, where audiences are deemed to have such short attention spans that every five minutes they require either a summary of the last ten minutes or a shock announcement. This week I saw a chart about bias within major news organisations: both CNN and USA Today were labelled as 'sensational or clickbait'. I've repeatedly read about scientists who were prompted by journalists towards making a controversial or sensational quote, which if published would distort their work but provide a juicy headline. It seems that limiting hyperbole is a critical skill for any scientist being interviewed.

Journalists don't owe invertebrate paleontologists, for example, a free lunch but there is a lot of good professional and occasionally amateur science being conducted away from the spotlight. Concentrating on the more controversial areas of research does little to improve science in the public's eye. Even reporting of such abstract (but mega-budget) experiments as the Large Hadron Collider seems to be based around headlines about 'The God Particle' (nearly six million results on Google) A.K.A. Higgs Boson (less than two million results). Next thing, they'll be nicknaming the LHC ‘The Hammer of Thor' or something equally cretinous. Although come to think of it…

The World Wide Web is far worse than printed news, with shock headlines ('It Was The Most XXX Ever Found - "It Blew My Mind," Expert Says') and over-inflated summaries that would make even lowbrow tabloids blush. Even specialist periodicals are not immune to the syndrome, with New Scientist magazine being particularly at fault. In 2009 it published the silly headline 'Darwin was wrong' which drew the ire of many biologists whilst providing a new form of ammunition for creationists. In 2012 their special 'The God Issue' turned out to contain less than fifteen pages on religion - but then it is meant to be a popular science periodical! In this vein the Ig Nobels seem to get more attention than the Nobel Prizes as journalists look for a quirky man-bites-dog angle to convince the public that a science story is worth reading.

3) Talking of which, journalists want to reach the widest possible audience and therefore looking for human angle is a prominent way to lure in readers. The two most recent Brian Cox television documentary series, Human Universe and Forces of Nature have concentrated on stories around families and children, with the science elements being interwoven almost effortlessly into the narrative.

In print and digital formats this bias means that the focus is frequently on articles that might directly affect humanity, especially medical, agricultural and environmental stories. This puts an unbalanced emphasis on certain areas of science and technology, leaving other specialisations largely unreported. This might not appear bad in itself, but lack of visibility can cause difficulties when it comes to maintaining public funding or attracting private philanthropy for less commercial and/or more theoretical science projects.

Another method used to make science more palatable is to concentrate on individual geniuses rather than team efforts. I assume only a very small proportion of the public know that theoretical physicists do their best work before they are thirty years old, yet the seventy-five year old Stephen Hawking (whose name is now a trademark, no less) is quoted almost every week as if he were Moses. He's well worth listening to but even so, Professor Hawking seems have become a spokesperson for almost any aspect of science the media want a quote on.

4) With competition tougher than ever thanks to social media and smartphone photography, journalists face ever tighter deadlines to publish before anyone else. This can obviously lead to a drop in accuracy, with even basic fact-checking sometimes lacking. For example, a year or two ago I sent a tweet to the British paleopathologist and presenter Dr Alice Roberts that the BBC Science and Environment News web page stated humans were descended from chimpanzees! She must have contacted them fairly rapidly as the content was corrected soon after, but if even the BBC can make such basic blunders, what hope is there for less reputable news-gathering sources? As with much of contemporary business, the mentality seems to be to get something into market as quick as possible and if it happens to be a smartphone that frequently catches fire, we'll deal with that one later. The Samsung Galaxy Note 7's recent debacle is the gadget equivalent of the BBC error: beating the opposition takes precedence over exactitude.

It's one to thing to define science as striving towards more accurate descriptions of aspects of reality rather than being a series of set-in-stone commandments, but publishing incorrect details for basic, well-established facts can only generate mistrust of journalists by both scientific professionals and members of the public who discover the mistake. Surely there's time for a little cross-checking with reference books and/or websites in order to prevent the majority of these howlers? Having said that, I find it scary that a major media organisation can commit such blunders. I wonder what the outcry would be if the BBC's Entertainment and Arts News page claimed that Jane Austen wrote Hamlet?

5) Finally, there's another explanation that has less to do with the science journalists themselves and more with what constitutes newsworthy stories. Negativity is the key here, and as such science news is swept along with it. For example, the BBC Science and Environment News web page currently has three articles on climate change and animal extinctions, an expensive project technology failure, earthquake news and a pharmaceutical story. Like a lot of political reports, those concerning STEM subjects concentrate on the bad side of the fence. Unfortunately, the dog-bites-man ordinariness of, for example ‘Project X succeeds in finding something interesting' usually precludes it from being deemed media-worthy. The ethos seems to be either find a unique angle or publish something pessimistic.

One tried and tested method to capture attention is to concentrate on scandal and error: science is just as full of problems as any other aspect of humanity. Of course it is good to examine the failure of high-tech agriculture that led to the UK's BSE 'mad cow' disease outbreaks in the 1980s and 90s, but the widespread dissemination of the supposed link between MMR and autism has caused immense damage around the world, thanks to a single report being unthinkingly conveyed as rock-hard evidence.

Bearing in mind that journalism is meant to turn a profit, perhaps we shouldn't be surprised at how misrepresented scientific research can be. It's difficult enough to find the most objective versions of reality, considering all the cognitive bias in these post-truth times. There are no obvious answers as to how to resolve the issue of poor quality science reporting without either delaying publishing and/or employing scientifically-trained staff. The market forces that drive journalism unfortunately mean that STEM stories rarely do science justice and often promote a negative attitude among the rest of mankind. Which is hardly what we need right now!

Sunday 22 September 2013

Going, going, gone: how do you decide which endangered species are worth saving?

My elder daughter recently adopted a Sumatran tiger. Not literally of course, but an Auckland Zoo package bought as a birthday present, with the tiger chosen above the seven other species on offer because - at least according to my daughter's claim - it was the most endangered one. In fact, the estimate for the number of Sumatran tigers left in the wild varies between four hundred and seven hundred individuals, so the lack of accuracy is only countered by the fact that both extremes are so low. With countless other species similarly close to the edge, if not worse off, a key question has arisen in recent years: are some species more worthy of conserving than others?

Presumably the choice on offer in the zoo's Adopt an Animal programme is intended to increase awareness of the plight of these particular animals. But can there be many people at least in the developed world who are not aware of some of the ever-increasing roster of endangered species? Indeed, there are now widespread claims that we may be living through a mass extinction event, the sixth known. Interestingly, it's only been in the last few years that some sort of quantitative definition of a mass extinction has gained popularity over the earlier, somewhat vague ‘one hundred to a thousand times the background rate' designation, with a rapid (at least on a geological timescale) 75% loss of species deemed the minimum number. However, this figure appears somewhat arbitrary, yet is quoted in various general readership articles as the number of species currently headed for extinction! Evolutionary biologist Richard Dawkins has much to say on the subject of fundamentally meaningless statistics: for example, how is 74% so much less worthy of the term ‘mass extinction' than a mere one per cent more? Granted, there may just be too many unknowns for a consensus in expert opinion, but deciding on a one per cent cut-off line for such an event is surely creating a label for its own sake, useful for lazy journalists but little else.

The International Union for Conservation of Nature (IUCN) Red List makes for depressing reading, with around 7000 species listed between the three worst categories: critically endangered; extinct in the wild; and species that have recently become totally extinct. Even worse, it appears to be out of date, if the example of the Yangtze River dolphin is anything to go by. It appears on the first of these lists, as opposed to the third, where most experts agree it should now sit. The fact that no single organisation seems to have enough resources to compile definitive current data doesn't help. After all, if you cannot identify the species most in need, how do governments and agencies decide which ones to save (and, unfortunately, which to doom to near-future extinction)?

The environmental movement of the past half century has long capitalised on photogenic ‘poster' species such as whales, apes and the giant panda, which add a wow factor that has had the side-effect of concentrating much of the funding on them. This has regrettably deprived many less aesthetic species of publicity, and probably in the case of some species such as the Yangtze River dolphin, their existence.

There are strong arguments both for and against the continuation of this policy, although things have recently got slightly better as regards recognition for non-figurehead species. Late last year the BBC television series Dara O Briain's Science Club made a foray into this area with the question - covered at the programme's usual break-neck speed -  are pandas worth all the money spent on them? Palaeontologist Richard Fortey and zoologist Lucy Cooke presented arguments seemingly against the high level of resources accorded the giant panda. Indeed, the latter emphasised the decline of one third of amphibian species worldwide. The time has finally come to appreciate that non-cute species deserve much greater attention than hitherto gained. To this end, the decidedly unpleasing looks of the deep-sea blobfish have recently seen it voted World's Ugliest Animal in a concerted effort to improve awareness of all the species that are least likely to appear on any fundraising poster.

So considering how many species, including plants and fungi, are currently endangered, is it worth spending millions of dollars each year to preserve, say, giant pandas? After all, aren't the latter just a wee bit useless? With a diet that is 99% bamboo and a seeming lack of reproductive drive, couldn't they be viewed as an over-specialised, evolutionary dead end, doomed regardless of loss of habitat and poaching? However, it isn't as simple as that. The popular description isn't completely accurate, with panda libido in captivity seemingly less than in the wild, although admittedly females are apparently only able to conceive for a few days each year. Even so, is it worthwhile to spend millions on captive breeding programmes (involving artificial insemination) for these cute creatures when the money could be split amongst many other species?

Auckland Zoo's adopt an animal scheme

Awww, cute...but is it worth it?

One of the key arguments in favour of figurehead species is that the publicity gained is then disseminated to other species in the same habitat, such as by keeping those environments as free of development as possible.  Preservation of entire ecosystems is a major element to the notion that for purely selfish reasons we should maintain as much biodiversity as possible. This is in order to preserve unique genomes that may one day prove useful in agriculture or as pharmaceuticals. After all, only about 5% of plant species have so far been studied for their medicinal properties, whilst the DNA of many species remains almost entirely unexamined. A good case can be seen with the Pacific yew, a conifer in severe decline that proved to be the source of an important chemotherapy drug. In a similar vein, loss of one species may cause the rise of another that is rather less neutral from a human viewpoint, whether it is an agricultural pest or a dangerous predator such as the aggressive Humboldt squid, which has largely superseded over-fished sharks around the Mexican Pacific coast.

So even without invoking a moral argument, there are plenty of good reasons why preserving as many types of organisms as possible may be important to our future.  Whether this can be achieved most efficiently via publicity-raising poster species is more difficult to ascertain. There are claims that we should support evolutionary-distinct species or those with a definitively viable breeding/cultivatable population, but this is hampered by the lack of detailed information mentioned above. For example, several population bottlenecks in the history of cheetahs have reduced their genetic diversity to such an extent that even a relatively comfortable population size - at least compared to some endangered species - is no guarantee of future salvation. In other words, the minimum viable population for a species is probably unique for each.

In addition, there aren't complete lists of members in each ecosystem for even relatively large creatures: it was only last month that the Olinguito, a Central American omnivorous mammal new to science, was formally described. With this lack of definitive information, it's little wonder there is a multitude of problems concerning even knowing where to begin conservation measures. Of course, spending funds on this sort of research, which has no immediate benefit to endangered species, would presumably take crucial funding away from vital preservation measures in the here and now. But since the research hasn't been done many factors remain little more than guestimates, thus creating a vicious circle as to which species require the most support.

This doesn't of course mean that dedicated ecologists are likely to be swayed from their labours of love by any amount of hard data. Whether the enormous efforts to save those species with miniscule populations is worthwhile in the long run remains to be seen. New Zealand's flightless parrot the kakapo, with less than one hundred breeding individuals left, is a prominent example. There are now so few that almost every bird has been named; but would it have been better to try saving multiple species with more likelihood of long-term survival? It's difficult to attempt objectivity when you are fighting for the survival of creatures that have been anthropomorphised even to the minimum level of naming them. Then again, it's often been the devotion of small groups of committed conservationists that pioneered the techniques now widespread, including the methods for publicising the plight of endangered species.

So it doesn't look like there are any easy answers in what has to be, if it is to succeed, a rapidly developing field. After all, it's only been a century since we stopped wiping out species for fun in the name of sport. Unlike the Higgs Bosun, some of the subjects involved in this area - the species themselves - aren't going to be hanging around for solutions at some indeterminate point in the future. As Gandhi put succinctly: "Earth provides enough to satisfy every man's needs, but not every man's greed." The problem is knowing where to begin on the mammoth task of fixing a planet-wide ecosystem. All I can say is good luck, because like it or not, we're all participants in this one!

Tuesday 18 June 2013

Deserving dollars: should mega budget science be funded in an age of austerity?

With the UK narrowly avoiding France's fate of a triple dip recession, I thought I would bite the bullet and examine some of the economics of current science. In a time when numerous nations are feeling severe effects due to the downturn, it is ironic that there are a multitude of science projects with budgets larger than the GDP of some smaller nations. So who funds these ventures and are they value for money, or even worthwhile, in these straitened times? Here are a few examples of current and upcoming projects, with the lesser known the project the more the information supplied:

National Ignition Facility

The world's most powerful laser was designed with a single goal: to generate net energy from nuclear fusion by creating temperatures and pressures similar to those in the cores of stars. However, to state that the NIF has not lived up to expectation would be something of an understatement. According to even the most conservative sources, the original budget of the Lawrence Livermore National Laboratory project has at the very least doubled if not quadrupled to over US$4 billion, whilst the scheduled operational date came five years overdue.

I first learned of the project some years ago thanks to a friend who knew one of the scientists involved. The vital statistics are astonishing, both for the scale of the facility and the energies involved. But it seems that there may be underlying problems with the technology. Over-reliance on computer simulations and denial of deleterious experimental results on precursor projects, as well as the vested interests of project staffers and the over-confident potential for military advances, have all been suggested as causes for what history may conclude as a white elephant. So perhaps if you are looking for an archetypal example of how non-scientific factors have crippled research, this may well be it.

Unlike all the other projects discussed, the National Ignition Facility is solely funded by one nation, the USA. Of course, it could be argued that four billion dollars is a bargain if the project succeeded, and that it is today's time-precious society that needs to learn patience in order to appreciate the long-term timescales required to overcome the immense technological challenges. Nuclear fusion would presumably solve many of todays - and the foreseeable futures - energy requirements whilst being rather more environmentally friendly than either fossil fuels or fission reactors. The potential rewards are plain for all to see.

However, the problems are deep-rooted, leading to arguments against the development of laser-based fusion per se. Alternative fusion projects such as the Joint European Torus and the $20 billion ITER - see an earlier post on nuclear fusion research for details - use longer-established methods. My verdict in a nutshell: the science was possibly unsound from the start and the money would be better spent elsewhere. Meanwhile, perhaps the facility could get back a small portion of its funding if Star Trek movies continue to hire the NIF as a filming location!

The International Space Station

I remember the late Carl Sagan arguing that the only benefit of the ISS that couldn’t be achieved via cheaper projects such as – during the Space Shuttle era - the European Space Agency’s Spacelab, was research into the deleterious effects on health of long-duration spaceflight. So at $2 billion per year to run is it worthwhile, or but another example of a fundamentally flawed project? After all, as it is the station includes such non-scientific facets as the ultimate tourist destination for multi-millionaires!

Sometimes referred to as a lifeline for American and Russian aerospace industries (or even a way to prevent disaffected scientists in the latter from working for rogue states), I have been unable to offer a persuasive argument as to why the money would not have been better spent elsewhere. It is true that there has been investigation into vaccines for salmonella and MRSA, but after twelve years of permanent crewing on board the station, just how value for money has this research been? After all, similar studies were carried out on Space Shuttle flights in previous few decades, suggesting that the ISS was not vital to these programmes. The Astronomer Royal Lord Martin Rees has described as it as a 'turkey in the sky', siphoning funds that could have been spent on a plethora of unmanned missions such as interplanetary probes. But as we should be aware, it usually isn't a case that money not spent on one project would automatically become available for projects elsewhere.

On a positive scientific note, the station has played host to the $2 billion Alpha Magnetic Spectrometer - a key contender in the search for dark matter - which would presumably have difficulty finding a long-duration orbital platform elsewhere. But then this is hardly likely to excite those who want immediate, practical benefits from such huge expenditure.

The ISS has no doubt performed well as a test bed for examining the deterioration of the human body due to living in space, if anything seriously weakening the argument for a manned Mars mission in the near future. Perhaps one other area in which the station has excelled has been that of a focal point for promoting science to the public, but surely those who follow in Sagan’s footsteps - the U.K.'s Brian Cox for one - can front television series with a similar goal for the tiniest fraction of the cost?

The Large Hadron Collider

An amazing public-relations success story, considering how far removed the science and technology are from everyday mundanity, the world's largest particle accelerator requires $1 billion per year to operate on top of a construction budget of over $6 billion. With a staff of over 10,000 the facility is currently in the midst of a two-year upgrade, giving plenty of time for its international research community to analyse the results. After all, the Higgs Boson A.K.A. 'God particle' has been found…probably.

So if the results are confirmed, what next? Apparently, the facility can be re-engineered for a wide variety of purposes, varying from immediately pragmatic biomedical research on cancer and radiation exposure to the long-term search for dark matter. This combination of practical benefits with extended fundamental science appears to be as good a compromise as any compared to similar-scale projects. Whether similar research could be carried out by more specialised projects is unknown. Does anyone know?

As for the future of mega-budget schemes, there are various projects in development extending into the next decade. The Southern Hemisphere is playing host to two large international collaborations: the Square Kilometre Array is due to begin construction in eleven nations - excluding its UK headquarters - in 2016, but it will be around eight years before this $2 billion radio telescope array is fully operational. Meanwhile the equally unimaginatively-named European Extremely Large Telescope is planned for a site in Chile, with an even longer construction period and a price tag approaching $1.5 billion. Both projects are being designed for a variety of purposes, from dark matter investigation to searching for small (i.e. Earth-sized) extra-solar planets with biologically-modified atmospheres.

At this point it is pertinent to ask do extremely ambitious science projects have to come with equally impressive price tags? Personally I believe that with a bit more ingenuity a lot of useful research can be undertaken on far smaller budgets. Public participation in distributed computing projects such as Folding@home and Seti@home, in which raw data is processed by home computers, is about as modest an approach as feasible for such large amounts of information.

An example of a long-term project on a comparatively small budget is the US-based Earthscope programme, which collects and analyses data including eminently practical research into seismic detection. With a construction cost of about $200 million and annual budget around a mere $125 million this seems to be a relative bargain for a project that combines wide-scale, theoretical targets with short-term, pragmatic gains. But talking of practical goals, there are other scientific disciplines crying out for a large increase in funding. Will the explosive demise of a meteor above the Russian city of Chelyabinsk back in February act as a wake-up call for more research into locating and deflecting Earth-crossing asteroids and comets? After all, the 2014 NASA budget for asteroid detection projects is barely over the hundred million dollar mark!

I will admit to some unique advantages to enormous projects, such as the bringing together of researchers from the funding nations that may lead to fruitful collaboration. This is presumably due to the sheer number of scientists gathered together for long periods, as opposed to spending just a few days at an international conference or seminar, for instance. Even so, I cannot help but feel that the money for many of the largest scale projects could be bettered used elsewhere, solving some of the immediate problems facing our species and ecosystem.

Unfortunately, the countries involved offer their populations little in the way of voice as to how public money is spent on research. But then considering the appalling state of science education in so many nations, as well as the short shrift that popular culture usually gives to the discipline, perhaps it isn’t so surprising after all. If we want to make mega-budget projects more accountable, we will need to make fundamental changes to the status of science in society. Without increased understanding of the research involved, governments are unlikely to grant us choice.

Thursday 26 November 2009

The Ghost in the Machine: the LHC, 2012 and the death of the 5th sun

As pattern-seeking animals it's always interesting to see just how many correlations we can find that aren't actually there. If today's techno-hip population of humans were primarily rational creatures the failure of numerous apocalyptic prophecies over the past century would surely have put paid to this pseudoscientific cottage industry. Yet a Hollywood blockbuster is now capitalising on yet another date for Armageddon looming on the horizon: December 2012, the Mayan death of the fifth sun. I first read about this impending doom more than a decade ago courtesy of Graham Hancock (I know, I know, but I really believe you should read all sides to an argument). However, Mayan scholars are apparently undecided as to whether translations of the Mayan calendar are accurate as to both the date and magnitude of events, as there aren't any Mayans around to verify. Of course this hasn't stopped the wishful unthinkers from elaborating the prediction ad nauseam.

Turning from the ridiculous to the sublime, when the Large Hadron Collider was nearing operation in 2008 the media interest was frankly astonishing, making the LHC an international celebrity in its own right. I wonder that if despite the size and cost, would this interest have been as great if the Higgs Boson wasn't also known as the God particle? Although I recently noticed a mortgage advertisement that proclaimed their application process wasn't akin to writing a thesis on quantum physics (perhaps the latter is the new 'rocket science'), the public understanding of quantum theory is minimal considering how long it has been around. But perhaps it's not that surprising, since most people's idea of science still clings to Victorian notions of certainty and absolute truths, not ambiguity and probability waves, never mind 'spooky action at a distance'. After all, if even Einstein wasn't convinced, why should non-scientists jump up and down with anticipation? Just don't get me started on the Copenhagen Interpretation...

The LHC-doomsday combo came together in a formal scientific sense in 2007 with the first of Holger Bech Nielsen and Masao Ninomiya's papers on whether 'something' from the future (insert creation overseer of your choice here) would sabotage the LHC and thus prevent it from destroying the Universe. The media seemed to have little idea how to handle the story when it was popularised this autumn: they were fairly certain it wasn't a spoof, yet its speculations veered towards the crackpot. Few journalists understand enough quantum theory to differentiate the implausible yet genuine hypothesis from the bizarre but almost certainly untenable. Perhaps JBS Haldane's classic 'the universe is not only queerer than we suppose, but queerer than we can suppose' would help, or Niels Bohr's comment as to whether a particular theory was crazy enough to have a chance of being correct.

Unfortunately other scientists don't want to debate Nielsen and Ninomiya's speculation but promptly shrug it off as a wacky thought experiment that got far too much attention. Yet wouldn't this have been a perfect opportunity to publicise the self-correcting aspect of the scientific method whilst relaying a little quantum mechanics along the way (not to mention convincing the tax payers of 40+ nations that all our little contributions were well spent)? A lot of post-nineteenth century physics started solely as thought experiments (okay, and maybe some impenetrable maths too), until years' later the experimenters managed to catch up. I'm no N&N fan club, but as the collider nears full operation surely the CERN staff would be pleased with any public elucidation. A few less worriers might help to lessen the phone calls pleading for the LHC to be shut down before it causes the end of the world...

Technorati Tags: ,