Showing posts with label Carl Sagan. Show all posts
Showing posts with label Carl Sagan. Show all posts

Thursday 28 May 2015

Presenting the universe: 3 landmark science documentary series

They say you carry tastes from your formative years with you for the rest of your life, so perhaps this explains why there are three science documentary television series that still have the power to enchant some decades after first viewing. Whilst there has been no shortage of good television science programming since - Planet Earth and the Walking with... series amongst them - there are three that remain the standard by which I judge all others:
  1. The Ascent of Man (1972) - an account of how humanity has evolved culturally and technology via biological and man-made tools. Presented by mathematician and renaissance man Jacob Bronowski.
  2. Cosmos (1980) - the history of astronomy and planetary exploration, interwoven with the origins of life. Presented by Carl Sagan (as if you didn't know).
  3. The Day the Universe Changed (1985) - a study of how scientific and technological breakthroughs in Western society generate paradigm shifts. Presented by the historian of science James Burke.

All three series have been proclaimed 'landmark' shows so it is interesting to compare their themes, viewpoints and production techniques, discovering just how similar they are in many ways. For a start, their excellent production values allowed for a wide range of international locations and historical recreations. They each have a charismatic presenter who admits to espousing a personal viewpoint, although it's quite easy to note that they get progressively more casual: if Jacob Bronowski has the appearance of a warm elder statesman then Carl Sagan is the father figure for a subsequent generation of scientists; James Burke's on-screen persona is more akin to the cheeky uncle, with a regular supply of puns, some good, some less so.

To some extent it is easy to see that the earliest series begat the second that in turn influenced the third. In fact, there is a direct link in that Carl Sagan hired several of the producers from The Ascent of Man for his own series, clearly seeing the earlier show as a template for Cosmos. What all three have is something extremely rare in other science documentaries: a passion for the arts that promotes a holistic interpretation of humanity's development; science does not exist in isolation. As such, the programmes are supported by superbly-illustrated tie-in books that extend the broadcast material from the latter two series whilst Bronowski's book is primarily a transcript of his semi-improvised monologue.

In addition to considering some of the standard examples of key developments in Western civilisation such as Ancient Greece and Galileo, the series include the occasional examination of Eastern cultures. The programmes also contain discussions of religions, both West and East. In fact, between them the series cover a vast amount of what has made the world the way it is. So not small potatoes, then!

The series themselves:

The Ascent of Man

To some extent, Jacob Bronowski was inspired by the earlier series Civilisation, which examined the history of Western arts. Both series were commissioned by David Attenborough, himself a natural sciences graduate who went on to present ground-breaking series in his own discipline as well as commissioning these landmark programmes. (As an aside, if there are any presenters around today who appears to embody the antithesis of C.P. Snow's 'the two cultures' then Sir David is surely in the top ten).

Bronowski's presentation is an astonishingly erudite (for all its improvisation) analysis of the development of our species and its technological society. Although primarily focused on the West, there is some consideration of other regions, from the advanced steel-making technology of medieval Japan to Meso-American astronomy or the relatively static culture of Easter Island. Time and again, the narrative predates the encumbrance of political correctness: that it was the West that almost solely generated our modern technological society - the 'rage for knowledge' for once outshining dogma and inertia.

Of course, it would be interesting to see how Bronowski might have written it today, in light of Jared Diamond's ground-breaking (in my humble opinion) Guns, Germs and Steel. Although he works hard to present science, the plastic arts, literature and myth as emerging from the same basic elements of our nature, it is clear that Bronowski considers the former to be much rarer - and therefore the more precious - discipline. Having said that, Bronowski makes a large number of Biblical references, primarily from the Old Testament. In light of the current issues with fundamentalism in the USA and elsewhere, it is doubtful that any science documentary today would so easily incorporate the breadth of religious allusions.

If there is a thesis underlying the series it is that considering how natural selection has provided humanity with a unique combination of mental gifts, we should use them to exploit the opportunities thus presented. By having foresight and imagination, our species is the only one capable of great heights - and, as he makes no pretence of - terrible depths. As he considers the latter, Bronowski admits that we should remain humble as to the state of contemporary knowledge and technology, which five hundred years hence will no doubt appear childlike. In addition, he states that belief in absolute knowledge can lead to arrogance; if we aspire to be gods, it can only end in the likes of Auschwitz. But his final speeches contain the wonderful notion that the path to annihilation can be avoided if science is communicated to all of society with the same vigour and zest as given to the humanities.

Cosmos

I was already an astronomy and astronautics fan when I saw this series. Its first UK broadcast slot was somewhat later than my usual bedtime, so it seemed a treat to be allowed to stay up after the rest of the family had gone to bed. Like Star Wars a few years before, it appeared to me to be an audio-visual tour-de-force; not surprisingly, both the tie-in hardback and soundtrack album arrived on my birthday that year.

Nostalgia aside, another key reason for the series' success was the charisma of the presenter himself. Much has been written of Sagan's abilities as a self-publicist, and the programmes do suffer from rather too many staring-beatifically-into-the-distance shots (as to some extent replicated more recently by Brian Cox in his various Wonders Of... series). Of course, it must have taken considerable effort to get the series made in the first place, especially in gaining a budget of over $6 million. After all, another great science populariser, the evolutionary biologist Stephen Jay Gould, never managed to gain anything beyond the occasional one-off documentary.

What is most apparent is Sagan's deep commitment to presenting science to the widest possible audience without distorting the material through over-simplification. However, in retrospect it is also obvious that he was using ideas from several scientific disciplines, such as the Miller-Urey experiment, to bolster his opinions on the likelihood of extra-terrestrial life. To some extent his co-writers reined him in, the final episode given over not to SETI but to plea for environmental stewardship.

Whilst the series is primarily concerned with a global history of astronomy and astrophysics, supplemented with first-hand accounts of planetary exploration, Sagan like Bronowski is equally at home with other scientific disciplines. He discusses the evolution of intelligence and incorporates elements of the humanities with equal aplomb. Another key element is the discussion of the role superstition and dead ends have played in the hindrance or even advancement of scientific progress, from Pythagorean mysticism, via Kepler's conflation of planetary orbits with the five Platonic solids, to Percival Lowell's imaginary Martian canals. Although Sagan repeats his earlier debunking of astrology, UFO sightings and the like, he doesn't rule out the role of emotions in the advancement of science and technology, citing for example the rocket pioneer Robert Goddard's Mars-centred epiphany.

Perhaps the primary reason that the series - despite the obvious dating of some of the knowledge - is still so engaging and why Sagan's narration is so widely quoted, is that he was a prose poet par excellence. Even when discussing purely scientific issues, his tone was such that the information could be effortlessly absorbed whilst allowing the viewer to retain a sense of wonder. Of course, Sagan had ample assistance from his two co-writers Ann Druyan and Steven Soter, as clearly proven by their scripts for the Neil deGrasse Tyson-hosted remake Cosmos: A Spacetime Odyssey. Nonetheless, it is hard to think of another presenter who could have made the original series the success it was on so many levels.

The Day the Universe Changed

Although James Burke had already made a large-scale history of science and technology series called Connections in 1978, it contained a rather different take on some of the same material. By focussing on interactive webs, the earlier series was somewhat glib, in that some of the connections could probably be replaced by equally valid alternatives.

In contrast, The Day the Universe Changed uses a more conventional approach that clearly shares some of the same perspectives as the earlier programmes. Like The Ascent of Man and the Cosmos remake, mediaeval Islamic science is praised for its inquisitiveness as well as the preservation of Classical knowledge. Burke was clearly influenced by his predecessors, even subtitling the series 'A Personal View by James Burke'. Perhaps inevitably he covers some of the same material too, although it would be difficult to create a brief history without reference to Newton or Ancient Greece.

As with Bronowski, Burke integrates scientific advances within wider society, a notable example being the rediscovery of perspective and its profound effect on contemporary art. He also supports the notion that rather than a gradual series of changes, paradigm shifts are fundamental to major scientific breakthroughs. In effect, he claims that new versions of the truth - as understood by a scientific consensus - may rely on abandonment of previous theories due to their irreconcilable differences. Having recently read Rachel Carson's 1950 The Sea Around Us I can offer some agreement: although Carson's geophysical analysis quietly screams in favour of plate tectonics, the contemporary lack of evidence lead her to state the no doubt establishment mantra of the period concerning static land masses.

What Burke constantly emphasises even more than his predecessors is that time and place has a fundamental influence on the scientific enquiry of each period. Being immersed in the preconceived notions of their culture, scientists can find it as difficult as anyone else to gain an objective attitude. In actuality, it is all but impossible, leading to such farcical dead-ends as Piltdown Man, a hoax that lasted for decades because it fulfilled the jingoistic expectations of British scientists. Burke's definition of genius is someone who can escape the givens of their background and thus achieve mental insights that no amount of methodical plodding can equal. Well, perhaps, on occasion.

The series also goes further than its predecessors in defining religion as anti-scientific on two grounds: its demand for absolute obedience in the face of logic and evidence, with reference to Galileo; or the lack of interest in progress, as with the cyclical yet static Buddhist view, content for the universe to endlessly repeat itself. Burke also shows how scientific ideas can be perverted for political ends, as with social Darwinism. But then he goes on to note that as the world gets ever more complex, and changes at an ever faster rate, non-specialists are unable to test new theories in any degree and so are having to rely on authority just as much as before the Enlightenment. How ironic!

All in all, these common threads are to my mind among the most important elements of the three series:
  1. Science and the humanities rely on the same basic processes of the human brain and so are not all that different;
  2. Scientific thinking can be as creative an endeavour as the arts;
  3. Scientists don't live in a cultural vacuum but are part and parcel of their world and time;
  4. Religion is the most change-resistant of human activities and therefore rarely appears sympathetic to science's aims and goals.

As Carl Sagan put it, "we make our world significant by the courage of our questions and the depth of our answers." For me, these three series are significant for their appraisal of some of those courageous explorers who have given us the knowledge and tools we call science.


Wednesday 1 April 2015

A very Kiwi conspiracy: in search of New Zealand's giant sea serpent

As a young child I probably overdid it on books in the boy's own fantastic facts genre, reading with breathless wonder about giant - and collectively extinct - megafauna such as ichthyosaurs and plesiosaurs. Therefore it's probably not surprising that a few years' later I was captivated by Arthur C. Clarke's 1957 novel The Deep Range, featuring as it does a giant squid and a sea serpent, both very much alive. How seriously Clarke took such cryptozoology is unknown, although he clearly stated he considered it likely that the ocean depths harboured specimens up to twice the size of those known to science.

Of course it's easy to scoff at such notions, bombarded as we are with endless drivel about megalodon and mermaids, both from a myriad of websites and even worse, the docufiction masquerading as fact on allegedly science-themed television channels (I'm talking about you, Discovery!) As Carl Sagan was known to say, "extraordinary claims require extraordinary evidence". Incidentally, if anyone has seen the clearly Photoshopped image of World War Two U-boats in front of the dorsal and tail fins of a megalodon, the total length of such an animal would be well over thirty metres. Most experts place the maximum length of this long-extinct species under twenty metres, so why do so many fakes over-egg the monster pudding?

I digress. One obvious difference between today and the pre-industrial past is that there used to be myriads of sightings regarding sea monsters of all shapes and sizes, but nowadays there are comparatively few, especially considering the number of vessels at sea today. Whilst there is a vast collection of fakery on the World Wide Web, much of this material appears to have been inspired by the BBC 2003 series Sea Monsters (and the various imitations that have since been broadcast) and the ease with which images can now be realistically manipulated.

As for scientifically-verifiable material of unknown marine giants, there is almost none - colossal squid aside. As Steven Spielberg summed up a quarter century after his canonical UFO movie Close Encounters of the Third Kind, with all the smartphone cameras about there should be documentary evidence galore. Likewise, enormous marine beasties should now be recorded on an ever-more frequent basis. After all, it's hardly as if giant sea serpents are being fished into extinction! Yet the lack of evidence implies that once again, the human penchant for perceiving patterns where none exist has caused the creation of myths, not the observation of genuine marine megafauna.

At least that's what I thought, until a couple of serendipitous events occurred. Early last year I noticed the National Institute of Water and Atmospheric Research's second-largest vessel MV Kaharoa docked in Viaduct Harbour in Auckland. It had just returned from a month's research expedition to the Kermadec Islands, about 900 kilometres north-east of New Zealand. What was interesting was that I later found out the Kaharoa had been on an identical trip the previous year, ostensibly to record the condition of the snapper stocks. Yet NIWA usually organises these missions every second year rather than annually. So why was the vessel returning to the Kermadecs a year early? Although a joint venture between France, Scotland and New Zealand, the funding has to originate either with public money or corporate grants. Therefore it's unlikely the decision for a 2014 mission was undertaken lightly.


MV Kaharoa

I'd forgotten this mildly diverting conundrum when many months later I was browsing the NIWA website and came across their Critter of the Week blog. It was fairly late at night and I'll confess to having imbibed several bottles of beer, but I was pretty astounded to see a fairly murky and obviously deep water image containing what appeared to be nothing less than a hairy-maned sea serpent, with a note stating it was estimated to be around  twenty metres in length. I quickly loaded some news channels, including the New Zealand Herald and the BBC's Science and Environment news home page, but without finding any references to such a beast. I then flicked to the main NIWA website, but again didn't come across anything related to the creature. I returned to the Critter of the Week blog, only to find the page was no longer there. How X-Files is that?

Of course I'd forgotten to screenshot the page or download the image, so there was no proof that I hadn't been hallucinating. Did I imagine it or just misinterpret a perfectly normal specimen? Or was the blog temporarily hacked by a nutter or conspiracy theorist, who added a spoof article? As I went through the options and discarded them, it gradually dawned on me that perhaps the Kaharoa's unexpected summer expedition had been organised with one particular purpose in mind: the search for an elusive giant spotted the previous year.

I usually consider myself to be fairly sane, so let's consider the facts in lieu of hard evidence:
  1. NIWA excel at finding new creatures: they have reported 141 species unknown to science within the past three years;
  2. The Kermadecs are home to some very large animals for their type, including oversize oysters, the giant limpet Patella kermadecensis and the amphipod Alicella gigantea, which is ten times the size of most species in the same taxonomic order;
  3. NIWA scientists have been known to comment with surprise on how many deep water species have recently been discovered - even if a specimen hasn't actually been captured - for regions that they have repeatedly studied over some years;
  4. Expeditions are only just starting to explore the region between the depths of 2000 and 8000 metres;
  5. Although the Kermadecs are on the edge of a marine desert, a combination of hot water and minerals upwelling from hydrothermal vents and the seabird guano that provides nutrition for the near-surface phytoplankton, help to kick-start diverse food webs;
  6. There is an increasing quantity of meltwater from the Antarctic ice shelf, which being less dense than seawater may affect the depth of the thermocline, a region of highly variable temperature, which in turn could be altering the ecology of the region;
  7. MV Kaharoa was carrying baited Hadal-landers, ideal for recording deep sea fauna, whereas snapper usually live in the top two hundred metres.

Apart from my own close encounter of the fishy kind, has there been any other recent evidence of what could be termed a giant sea serpent in New Zealand waters? Just possibly. A Google Earth image of Oke Bay in the Bay of Islands shows the wake of something that has been estimated to be around twelve metres long. The wake doesn't fit the diagnostic appearance for great whales or of a boat engine. Therefore could this be proof of sea serpents in the area? I have to say it looks more like an image rendering glitch to me, but then I'm no expert. On the plus side, the most likely candidate for such a creature is the giant oarfish Regalecus glesne, which I discussed in a post five years ago and which authoritative sources suggest can attain a maximum length of eleven metres. So clearly, the Oke Bay image is within the realm of possibility. As for the lack of documentary evidence compared to earlier centuries, could it be that the vast amounts of noise pollution from ship's engines may keep the creatures far from standard shipping lanes?

Where does this leave the Critter of the Week content that so briefly slipped - presumably accidentally - onto the live site? One possible clue that led marine biologists back to the Kermadecs could be the 2012 Te Papa Tongarewa Museum report on a colossal squid dissection, which states that chunks of herring-type flesh were found in its stomach and caecum. The oarfish belongs to the herring family and so it is just possible that titanic struggles between squid and oarfish are occurring in the ocean deep even now. And where better for an expedition to search for an elusive monster without fear of interruption than these relatively remote islands?

Unfortunately this is all surmise, as NIWA have refused to respond to my queries. It may be a long shot, but if anyone has noticed Te Papa taking delivery of a lengthy, narrow cross-section tank, or very large vats of formalin, why not let me know? The truth is out there, somewhere...probably...

Saturday 28 February 2015

Have spacecraft, will travel: planning the first manned Mars mission

As a space travel enthusiast since I was knee-high to a grasshopper it took me many years to appreciate robot probe missions with anything like the zeal engendered by manned spaceflight. As a schoolboy I watched the first space shuttle mission launch in 1981; no doubt like a multitude of others I initially considered this the start of the ‘casual' rather than pioneering phase of astronautics. Therefore it wasn't long before I asked myself the obvious question: when will there be a crewed mission to Mars?

Mars seems extremely familiar, no doubt due to the myriad of science fiction novels and films concerning the Red Planet. The last decade has seen a proliferation of news stories as various orbiters and rovers gather enormous amounts of - at times puzzling - data. However, none of the numerous projects of all scales that have investigated a manned mission have ever lifted off the launch pad. So here's a brief look at the state of play, not to say of course that this might not look woefully dated within the next few years.

1) Who will go to Mars?

Obviously the USA will supply the most funding so they will run the show. Or will they? The NASA budget available for planetary science is less than half that for International Space Station (ISS) operations, although of course the former are all unmanned missions. In fact, the Planetary Society has claimed that NASA spends less each year on interplanetary probes than the USA does on dog toys! A manned mission would have to negate this trend, as realistic estimates could be around US$500 billion for a single mission.

President Obama's announced half-billion dollar increase to the NASA budget is unlikely to be replicated by any Tea Party candidate who might (God forbid) achieve power. Unless that is we see a return to Cold War rivalries, with China offering a two-horse race to Mars. That might sound unlikely, but in 2006 the Chinese Government announced a long-term goal to land a crew there between 2040 and 2060. Since the US refused to allow them ISS involvement due to not wanting its technology to become available to Beijing, it is doubtful the Whitehouse would be any happier to cooperate in a Mars mission.

Either way, it's probable that some of the ISS partners would collaborate. However unrealistic it now appears in light of the financial crisis, back in 2001 the European Space Agency (ESA) announced its own plan for a crewed Mars landing in the 2030s. There was even a suggestion to include Russia as a minority partner, but the political situation there may prove prohibitive.

It doesn't just have to be other Western nations who participate in a NASA-led project, as numerous private companies are now involved in the commercial space programme. No doubt collaboration between some of the long-established aerospace giants and recent start-ups such as Space-X - whose long-term goal is to establish a Martian colony - with various Western governments would be more palatable to finance ministers. But it's still early days for the private sector: smaller infrastructure may shorten timescales compared to monolithic state enterprise, but as the Virgin Galactic SpaceshipTwo crash shows, developing even sub-orbital craft at this level still carries enormous risk.

So all in all, it could be the US and ESA, with or without substantial private investment, or China in a race with a Western bloc or (as an extreme longshot) Dutch engineer and entrepreneur Bas Lansdorp, whose Mars One mission plans to regularly send crews of four non-professional astronauts on a one-way trip to the Red Planet from 2025. So far he has raised about 1/8000th of the project's already shoestring budget, but that hasn't stopped thousands of would-be colonists from applying. In addition to the necessary privations, these volunteers would also be the subjects of a fund-raising reality television show. If doesn't sound even vaguely like the product of an insane society then I don't know what is. Perhaps we should just turn our backs on the rest of the universe and just spend our lives uploading selfies to social media sites?

2) What will happen?

In theory it sounds simple: a small group of professional astronauts with various scientific backgrounds will spend up to two years on a high-risk mission, exploring the Martian surface for perhaps a month or so, then bring back copious samples of rock, soil, atmosphere and ice for more detailed examination on Earth.

The BBC ‘s 2004 mockumentary Space Odyssey: Voyage to the Planets showed the deadly effects that ionizing radiation can have on interplanetary travellers. The Mars Science Laboratory, carrier of the Curiosity rover, spent the Earth to Mars transit recording the radiation levels. It confirmed that they were high enough to risk crew members contracting various serious conditions such as cataracts and cancer. Incidentally, female astronauts would apparently be more prone to radiation-induced cancers than male colleagues. A 2012 mission plan considered developing an electromagnetic anti-radiation shield, but most designs are looking to use traditional aluminium construction, perhaps with polyethylene shielding around the pressurised cabins. This definitely appears to be a case of fingers crossed as much as relying on advanced materials science.

The long duration spent in shipboard micro-gravity will also cause physical problems such as bone and muscle deterioration. The astronauts/cosmonauts/taikonauts (delete as preferred) will then have to adjust on Mars arrival to the one-third Earth gravity. As well as avoiding radiation on the Martian surface they will have to minimise contamination from the fine dust: minute particles suspended in the atmosphere could cause lung and thyroid problems if allowed into the lander cabin.

Besides the physical problems, the pioneering crew will also have to contend with the psychological effects of having travelled further from the Earth than any other humans - by an enormous margin. It's one thing to undertake a mission on the ISS - with a regular exchange of crew and a close-up view of the Earth via the cupola - but quite another to spend several years away from fresh air, blue skies, and all the other fantastic things we take for granted. The interplanetary distances would of course be exacerbated by the lack of real-time conversation: the one-way journey time for radio signals from the Martian surface is between four and twelve minutes.

There has been much research into astronaut's disturbed sleep patterns, which can obviously have deleterious effects on their work as well as their mental health. The claustrophobic conditions may contribute too: negative emotions blighted the small group of inhabitants of the Arizona-based Biosphere 2 sealed ecosystem in the 1990s. In addition, this experiment had distinct problems maintaining the environment, with a primary issue being the fluctuating oxygen and carbon dioxide levels. All in all, there are likely to be problems even the best planned mission won't have predicted.

3) When will it take place?

By comparison to low Earth orbit missions, a trip to Mars would be several magnitudes greater. If you want a pioneering aviation analogy I've just figured out that ratio of the Earth-Moon distance compared to the mean Earth-Mars distance is akin to the Wright Brothers' first flight of 36.5 metres being followed up by another spanning over 5 kilometres!

I can foresee two main issues to consider when planning mission timelines, which should ideally coincide to suggest an ideal launch window. The first is the relative orbital mechanics of the two bodies, which can be exploited so as to utilise a minimum fuel trajectory. The second relies on the eleven-year solar cycle: maximal solar activity helps to block interstellar cosmic rays and so reduce the risk of radiation poisoning. Although the sun's output would be at its peak, the astronauts would be safe from solar flares and coronal mass ejections providing they didn't need to undertake any spacewalks or surface EVAs for their duration.

There are several research projects that if one were to prove successful, could reduce by several decades the time before humanity is ready for its first manned Mars flight. The University of Washington and Lockheed Martin are both working on nuclear fusion technology suitable for such a mission. By reducing the journey time from between six and eight months to just three months there would be far less health risk to the crew, as well as presumably considerable weight savings on air and consumables.

Therefore it may become feasible as early as the 2040s but I doubt any earlier, regardless of how much advance is made in fusion technology. On top of all the usual political and socio-economic fluctuations there are just too many important longer-term issues that need resolution here first.

4) Where will it take place?

Mars, of course! The planet has a wide variety of locales (hint of travel brochure there), some rather more interesting than others. If the public get to vote on sites for exploration - bearing in mind that taxpayers will no doubt be funding the majority of the mission - conspiracy theorists and assorted nutbars might promote the curious tetrahedrons (note, not pyramids) of Elysium. Presumably they're enormous ventifacts, but they still appear to be very interesting geological features.

Then there's the great canyon system of Valles Marineris, over 4000 kilometres long and up to 7 kilometres deep. Or how about the 25 kilometre high Olympus Mons and its surrounding escarpment? In Pale Blue Dot: A Vision of the Human Future in Space, Carl Sagan suggested that it might be fruitful to explore the slopes of the Martian volcanoes in case they are scattered with diamonds ejected from the carbon-rich mantle!

Other locations that are just begging for detailed exploration are the polar caps, now thought to be mostly composed of water ice rather than frozen carbon dioxide, and caves or caverns, which would not only be a good place to search for native microbes but also to hide from radiation or dust storms.

5) Why will it happen?

This is perhaps the most difficult question to answer. Carl Sagan argued that the mission would fulfil the deep-seated need for exploration that our species - only recently converted from a nomadic existence - still feels. There is something to be said of this provision of a surrogate for human wanderlust, as identified in Bertrand Russell's 1959 quote: "a world without war need not be a world without adventurous and hazardous glory." This form of argument seems fairly mainstream in astronautic circles: even NASA's budget estimate for 2016 includes the phrases ‘reveal the unknown' (very likely) and ‘benefit all humankind' (which seems rather less obvious, except for Earth resources and weather satellites).

Against this notion are rather more pragmatic motives such as a combination of accelerated technological development and national prestige. But if nuclear fusion power is acquired in time for the first mission it's difficult to see what else will be gained from spending say half a trillion US dollars on a single crewed flight: wouldn't it be wiser to spend such vast sums on environmental stabilisation or medical research here on Earth? I've already commented on the potential white elephant of the ISS and there are no doubt many who don't consider any manned space exploration a suitable use of such enormous resources.

It's obvious that there are distinctive practical advantages to having humans on the spot rather than relying on robots. One issue that a single manned mission might be able to resolve that countless probes wouldn't is the question of life on Mars. The haze and plume seen in 2012 and the seasonal methane suggest some very interesting meteorological phenomenon if there isn't a biological explanation, but if there is any Martian bacteria then surely the mission could be deemed worthy of its immense budget? Somehow, I have my doubts…

One day in the next few centuries there could well be - unfortunately - branches of Starbucks and McDonalds on Mars and the Red Planet will be an alien frontier no more. But until then, any humans who undertake such an incredible journey will be pioneers in the Yuri Gagarin/Roald Amundsen/Edmund Hillary mould. However, I doubt the first human to step onto the Martian surface will use the latter's keen Kiwi phraseology: "we knocked the b***d off!"

Tuesday 23 December 2014

Easy fixes: simple corrections of some popular scientific misconceptions

A few months' ago I finally saw the film 'Gravity', courtesy of a friend with a home theatre system. Amongst the numerous technical errors - many pointed out on Twitter by Neil deGrasse Tyson - was one that I hadn't seen mentioned. This was how rapidly Sandra Bullock's character acclimatised to the several space stations and spacecraft immediately after removing her EVA suit helmet. As far as I am aware, the former have nitrogen-oxygen atmospheres whilst the suits are oxygen-only, necessitating several hours of acclimatisation.

I may of course be wrong on this, and of course dramatic tension would be pretty much destroyed if such delays had to be woven into the plot, but it got me thinking that there are some huge fundamental errors propagated in non-scientific circles. Therefore my Christmas/Hanukkah/holiday season present is a very brief, easy -on-the-brain round-up of a few of the more obvious examples.

  1. The Earth is perfect sphere.
    Nope, technically I think the term is 'oblate spheroid'. Basically, a planet's spin squashes the mass so that the polar diameter is less than the equatorial diameter. Earth is only about 0.3% flatter in polar axis but if you look at a photograph of Saturn you can see a very obvious squashing.

  2. Continental drift is the same thing as plate-tectonics.
    As a child I often read that these two were interchangeable, but this is not so. The former is the hypothesis that landmasses have moved over time whilst the latter is the mechanism now accepted to account for this, with the Earth's crust floating over the liquid mantle in large segments or plates.

    Geologist Alfred Wegener suggested the former in 1912 but is was largely pooh-poohed until the latter was discovered by ocean floor spreading half a century later. As Carl Sagan often said, "extraordinary claims require extraordinary evidence".

  3. A local increase in cold, wet weather proves that global warming is a fallacy.
    Unfortunately, chaose theory shows that even the minutest of initial changes can cause major differences of outcome, hence weather forecasting being far from an exact science.

    However, there is another evidence for the validity of this theory, fossil fuel lobbyists and religious fundamentalists aside. I haven't read anything to verify this, but off the top of my head I would suggest that if the warm water that currently travels north-east across the Atlantic from the Gulf of Mexico (and prevents north-western Europe from having cold Canadian eastern seaboard winters), then glacial meltwater may divert this warm, denser seawater. And then the Isles of Scilly off the Cornish coast may face as frosty a winter as the UK mainland!

  4. Evolution and natural selection are the same thing.
    Despite Charles Darwin's On the Origin of Species having been published in 1859, this mistake is as popular as ever. Evolution is simply the notion that a population within a parent species can slowly differentiate to become a daughter species, but until Darwin and Alfred Russel Wallace independently arrived at natural selection, there really wasn't a hypothesis for the mechanism.

    This isn't to say that there weren't attempts to provide one, it's just that none of them fit the facts quite as well as the elegant simplicity of natural selection. Of course today's technology, from DNA analysis to CAT scans of fossils, provides a lot more evidence than was available in the mid-Nineteenth Century. Gregor Mendel's breeding programmes were the start of genetics research that led to the modern evolutionary synthesis that has natural selection at its core.

  5. And finally…freefall vs zero gravity.
    Even orbiting astronauts have been known to say that they are in zero gravity when they are most definitely not. The issue is due to the equivalence of gravity and acceleration, an idea which was worked on by luminaries such as Galileo, Newton and Einstein. If you find yourself in low Earth orbit - as all post-Apollo astronauts are - then clearly you are still bound by our planet's gravity.

    After all, the Moon is approximately 1800 times further away from the Earth than the International Space Station (ISS), but it is kept in orbit by the Earth's pull (okay, so there is the combined Earth-Moon gravitational field, but I'm keeping this simple). By falling around the Earth at a certain speed, objects such as the ISS maintain a freefalling trajectory: too slow and the orbit would decay, causing the station to spiral inwards to a fiery end, whilst too fast would cause it to fly off into deep space.

    You can experience freefall yourself via such delights as an out-of-control plummeting elevator or a trip in an arc-flying astronaut training aircraft A.K.A. 'Vomit Comet'. I'm not sure I'd recommend either! Confusingly, there's also microgravity and weightlessness, but as it is almost Christmas we'll save that for another day.
There are no doubt numerous other, equally fundamental errors out there, which only goes to show that we could do with much better science education in our schools and media. After all, no-one would make so many similar magnitude mistakes regarding the humanities, would they? Or, like the writer H.L. Mencken, would I be better off appreciating that "nobody ever went broke underestimating the intelligence of the (American) public"? I hope not!

Saturday 16 August 2014

The escalating armoury: weapons in the war between science and woolly thinking

According to that admittedly dubious font of broad knowledge Wikipedia, there are currently sixteen Creationist museums in the United States alone. These aren't minor attractions for a limited audience of fundamentalist devotees either: one such institution in Kentucky has received over one million visitors in its first five years. That's hardly small potatoes! So how much is the admittance fee and when can I go?

Or maybe not. It isn't the just the USA that has become home to such anti-scientific nonsense either: the formerly robust secular societies of the UK and Australia now house museums and wildlife parks with similar anti-scientific philosophies. For example, Noah's Ark Zoo Farm in England espouses a form of Creationism in which the Earth is believed to be a mere 100,000 years old. And of course in addition to traditional theology, there is plenty of pseudo-scientific/New Age nonsense that fails every test science can offer and yet appears to be growing in popularity. Anyone for Kabbalah?

It's thirty-five years since Carl Sagan's book Broca's Brain: Reflections on the Romance of Science summarised the scientific response to the pseudo-scientific writings of Immanuel Velikovsky. Although Velikovsky and his bizarre approach to orbital mechanics - created in order to provide an astrophysical cause for Biblical events - has largely been forgotten, his ideas were popular enough in their time. A similar argument could be made for the selective evidence technique of Erich von Daniken in the 1970's, whose works have sold an astonishing 60 million copies; and to a less extent the similar approach of Graham Hancock in the 1990's. But a brief look at that powerhouse of publishing distribution, Amazon.com, shows that today there is an enormous market for best-selling gibberish that far outstrips the lifetime capacity of a few top-ranking pseudo-scientists:
  • New Age: 360,000
  • Spirituality: 243,000
  • Religion: 1,100,000
  • (Science 3,100,000)
(In the best tradition of statistics, all figures have been rounded slightly up or down.)

Since there hasn't exactly been a decrease of evidence for most scientific theories, the appeal of the genre must be due to changes in society. After writing-off the fundamentalist/indoctrinated as an impossible-to-change minority, what has lead to the upsurge in popularity of so many publications at odds with critical thinking?

It seems that those who misinterpret scientific methodology, or are in dispute with it due to a religious conviction, have become adept at using the techniques that genuine science popularisation utilises. What used to be restricted to the printed word has been expanded to include websites, TV channels, museums and zoos that parody the findings of science without the required rigorous approach to the material. Aided and abetted by well-meaning but fundamentally flawed popular science treatments such as Bill Bryson's A Short History of Nearly Everything, which looks at facts without real consideration of the science behind them, the public are often left with little understanding of what separates science from its shadowy counterparts. Therefore the impression of valid scientific content that some contemporary religious and pseudo-science writers offer can quite easily be mistaken for the genuine article. Once the appetite for a dodgy theory has been whetted, it seems there are plenty of publishers willing to further the interest.

If a picture is worth a thousand words, then the 'evidence' put forward in support of popular phenomenon such an ancient alien presence or faked moon landings seems all the more impressive. At a time when computer-generated Hollywood blockbusters can even be replicated on a smaller scale in the home, most people are surely aware of how easy it is to be fooled by visual evidence. But it seems that pictorial support for a strongly-written idea can resonate with the search for fundamental meaning in an ever more impersonal technocratic society. And of course if you are flooded with up-to-the-minute information from a dozen sources then it is much easier to absorb evidence from your senses than having to unravel the details from that most passé of communication methods, boring old text. Which perhaps fails to explain just why there are quite so many dodgy theories available in print!

But are scientists learning from their antithesis how to fight back? With the exception of Richard Dawkins and other super-strict rationalists, science communicators have started to take on board the necessity of appealing to hearts as well as minds. Despite the oft-mentioned traditional differentiation to the humanities, science is a human construct and so may never be purely objective. Therefore why should religion and the feel-good enterprises beloved of pseudo-scientists hold the monopoly on awe and wonder?

Carl Sagan appears to have been a pioneer in the field of utilising language that is more usually the domain of religion. In The Demon-Haunted Word: Science As A Candle In The Dark, he argues that science is 'a profound source of spirituality'. Indeed, his novel Contact defines the numinous outside of conventional religiosity as 'that which inspires awe'. If that sounds woolly thinking, I'd recommend viewing the clear night sky away from city lights...

Physicist Freeman Dyson's introduction to the year 2000 edition of Sagan's Cosmic Connection uses the word 'gospel' and the phrase 'not want to appear to be preaching'. Likewise, Ann Druyan's essay A New Sense of the Sacred in the same volume includes material to warm the humanist heart. Of course, one of the key intentions of the Neil deGrasse Tyson-presented reboot of Cosmos likewise seeks to touch the emotions as well as improve the mind, a task at which it sometimes - in my humble opinion - overreaches.

The emergence of international science celebrities such as Tyson is also helping to spread the intentions if not always the details of science as a discipline. For the first time since Apollo, former astronauts such as Canadian Chris Hadfield undertake international public tours. Neil deGrasse Tyson, Michio Kaku and Brian Cox are amongst those practicing scientists who host their own regular radio programmes, usually far superior to the majority of popular television science shows. Even the seven Oscar-winning movie Gravity may have helped promote science, with its at times accurate portrayal of the hostile environment outside our atmosphere, far removed from the science fantasy of most Hollywood productions. What was equally interesting was that deGrasse Tyson's fault-finding tweets of the film received a good deal of public attention. Can this suppose that despite the immense numbers of anti-scientific publications on offer, the public is prepared to put trust in scientists again? After all, paraphrasing Monty Python, what have scientists ever done for us?

There are far important uses for the time and effort that goes into such nonsense as the 419,000 results on Google discussing 'moon landing hoax'. And there's worse: a search for 'flat earth' generates 15,800,00 results. Not that most of these are advocates, but surely very few would miss most of the material discussing these ideas ad nauseum?

Although it should be remembered that scientific knowledge can be progressed by unorthodox thought - from Einstein considering travelling alongside a beam of light to Wegener's continental drift hypothesis that led to plate tectonics - but there is usually a fairly obvious line between an idea that may eventually be substantiated and one that can either be disproved by evidence or via submission to parsimony. Dare we hope that science faculties might teach their students techniques for combating an opposition that doesn't fight fair, or possibly even how to use their own methods back at them? After all, it's time to proselytise!

Wednesday 18 June 2014

Opening hearts and minds: Cosmos old, new, borrowed and blue

As a young and impressionable teenager I recall staying up once a week after the adults in my home had gone to bed in order to watch an amazing piece of television: Cosmos, a magical journey in thirteen episodes that resonated deeply with my own personal hopes and dreams. Now that Cosmos: A Spacetime Odyssey has completed its first run it's worth comparing and contrasting the two series, serving as they do as reflections of the society and culture that created them.

Both versions were launched with aggressive marketing campaigns: I was surprised to see even here in Auckland a giant billboard promoted the series in as hyped a media operation as any Hollywood blockbuster. But then I assume the broadcasters have to get returns for their massive investments (dare I call it a leap of faith?) Both the original series and the updated / reimagined / homage (delete as appropriate) version have greater scope, locales and no doubt budgets than most science documentary series, a few CGI dinosaur and David Attenborough-narrated natural history shows excepted.

The aim of the two series is clearly identical and can be summed up via a phrase from Carl Sagan's introduction to the first version's tie-in book: "to engage hearts as well as minds". In addition, both the 1980 and 2014 versions are dedicated to the proposition that "the public are far more intelligent than generally given credit for". However, with the rise of religious fundamentalist opposition to science in general and evolution in particular, there were times when the new version obviously played it safer than the earlier series, such as swapping Japanese crabs for much more familiar species, dogs. As before, artificial selection was used as a lead-in to natural selection, exactly as per Darwin's On the Origin of Species.

Another example to put the unconverted at their ease in the Neil deGrasse Tyson series is the use of devices that rely on the enormous popularity of science fiction movies and television shows today. Even the title sequence provokes some déjà vu, reminding me of Star Trek: Voyager. But then one of the directors and executive producers is former Star Trek writer-producer Brannon Braga, so perhaps that's only to be expected. In addition, the temple-like interior of Sagan's ship of the imagination has been replaced by something far more reminiscent of the Enterprise bridge. I suppose the intention is to put the scientifically illiterate at their ease before broaching unfamiliar territory.

Talking of science fiction, an echo of the space 'ballet' in 2001: A Space Odyssey can be seen with the use of Ravel's Bolero for the beautiful sequence in episode 11 of the new series. Unfortunately, the commissioned music in the Tyson programme fails to live up to the brilliant selections of classical, contemporary and folk music used in the Sagan version, which were presumably inspired by the creation of the Voyager Golden Record (a truly 1970's project if ever there was one) and with which it shares some of the same material. At times Alan Silvestri's 2014 score is too reminiscent of his Contact soundtrack, which wouldn't in itself be too distracting, but at its most choral/orchestral is too lush and distinctly overblown. Having said that, the synthesizer cues are more successful, if a bit too similar to some of the specially written material Vangelis composed for the 1986 revised version.

I also had mixed feelings about the animated sequences, the graphic novel approach for the characters seemingly at odds with the far more realistic backgrounds. Chosen primarily for budgetary reasons over live-action sequences, the combination of overstated music, dramatic lighting and quirks-and-all characterisation heavy on the funny voices meant that the stories tended to get a bit lost in the schmaltz-fest. I know we are far more blasé about special effects now - the Alexandrian library sequence in the original series blew me away at the time - but I'd rather have real actors green-screened onto digimattes than all this pseudo Dark Knight imagery.

Back to the content, hurrah! For readers of the (distinctly unpleasant) Keay Davidson biography, Carl Sagan, champion of Hypatia, has become known as the feminist ally who never did any housework. He has been left distinctly in the shade by the much greater attention paid to women scientists in the new series. Presumably Ann Druyan is responsible for much of this, although there are some lost opportunities: Caroline Herschel, most obviously; and Rachel Carson wouldn't have gone amiss, considering how much attention was given to climate change. As with the original series, the new version made a fair stab at non-Western contributions to science, including Ibn al-Haytham and Mo Tzu in the new series.

As to what could have been included in the Tyson version, it would have been good to emphasise the ups and downs trial-and-error nature of scientific discovery. After all, Sagan gave a fair amount of time to astronomer, astrologer and mystic Johannes Kepler, including his failed hypothesis linking planetary orbits to the five Platonic solids. Showing such failings is good for several reasons: it makes scientists seem as human as everyone else and also helps define the scientific method, not just the results. Note: if anyone mentions that Kepler was too mystical when compared to the likes of Galileo, point them to any modern biography of Isaac Newton...

Neil deGrasse Tyson is an excellent successor to Sagan but at times he seems to almost be imploring the audience to understand. But whereas Sagan only contended with good old fashioned astrology, his successor faces an audience of young Earth creationists, alien abductees, homeopaths and moon landing hoax theorists, so perhaps his less relaxed attitude is only to be expected. Despite the circa 1800 exoplanets that have now (indirectly) been detected, the new series failed to mention this crucial update to the Drake equation. Indeed, SETI played a distinctly backseat role to the messages of climate degradation and how large corporations have denied scientific evidence if it is at odds with profit margins.

All in all I have mixed feelings about the new series. For a central subject, the astronomy was at times second fiddle to the 'poor boy fighting adversity' theme of Faraday, Fraunhofer, etal. Not that there's anything bad about the material per se, but I think a lot more could have been made of the exciting discoveries of the intervening years: dark matter and dark energy, geological activity on various moons other than Io, even exoplanets.

The original 1980 series was a pivotal moment of my childhood and no doubt inspired countless numbers to become scientists (British physicist and presenter Brian Cox, for one), or at least like me, to dabble amateurishly in the great enterprise in our spare time. I'm pleased to add that I'm one degree of separation from Carl Sagan, thanks to having worked with a cameraman from the original series. But we can never go back. Perhaps if we're lucky, Tyson, Druyan and company will team up for some other inspiring projects in the future. Goodness knows we could do with them!

Saturday 15 March 2014

Cutting remarks: investigating five famous science quotations

If hearing famous movie lines being misquoted seems annoying, then misquoted or misused science citations can be exasperating, silly or downright dangerous. To this end, I thought that I would examine five well-known science quotations to find the truth behind the soundbite. By delineating the accurate (as far as I'm aware) words in the wider context in which they were said/written down/overheard by someone down the hallway, I may be able to understand the intended meaning, and not the autopilot definition frequently used. Here goes:

1) God does not play dice (Albert Einstein)

Possibly Einstein's most famous line, it sound like the sort of glib comment that could be used by religious fundamentalists to denigrate science in two opposing fashions: either Einstein is being facetious and therefore sacrilegious; or he supports an old-fashioned version of conventional Judeo-Christian beliefs in which God can be perceived in the everyday world. Talk about having your cake and eating it!

Einstein is actually supposed to have said: "It is hard to sneak a look at God's cards. But that he would choose to play dice with the world...is something that I cannot believe for a single moment." This gives us much more material to work with: it was actually a quote Einstein himself supplied to a biographer. Some years earlier he had communicated with physicist Max Born along similar lines: "Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one'. I, at any rate, am convinced that He does not throw dice."

So here is the context behind the quote: Einstein's well-known disbelief in the fundamental nature of quantum mechanics. As I've discussed in a previous post Einstein's opinions on the most accurate scientific theory ever devised was completely out of step with the majority of his contemporaries - and physicists ever since. Of course we haven't yet got to the bottom of it; speaking as a non-scientist I find the Copenhagen Interpretation nonsense. But then, many physicists have said something along the lines of that if you think you understand quantum mechanics, you haven't understood it. Perhaps at heart, Einstein was stuck in a Nineteenth Century mind set, unable to conceive of fundamental limits to our knowledge or that probability lies at the heart of reality. He spent decades looking for a deeper, more obviously comfortable, cause behind quantum mechanics. And as for his interest in the 'Old One', Einstein frequently denied his belief in a Judeo-Christian deity but referred to himself as an agnostic: the existence of any presence worthy of the name 'God' being "the most difficult in the world". Now there's a quote worth repeating!

2) Science is a way of thinking much more than it is a body of knowledge (Carl Sagan)

As I've mentioned before, Bill Bryson's A Short History of Nearly Everything is chock full of the results of scientific investigation but rarely stops to consider the unique aspects that drive the scientific method, or even define the limits of that methodology. Sagan's full quote is: "Science is more than a body of knowledge. It is a way of thinking; a way of sceptically interrogating the universe with a fine understanding of human fallibility. If we are not able to ask sceptical questions, to interrogate those who tell us that something is true, to be sceptical of those in authority, then, we are up for grabs for the next charlatan (political or religious) who comes rambling along."

It is interesting because it states some obvious aspects of science that are rarely discussed, such as the subjective rather than objective nature of science. As human beings, scientists bring emotions, selective memory and personal preferences into their work. In addition, the socio-cultural baggage we carry is hardly ever discussed until a paradigm shift (or just plain, old-fashioned time has passed) and we recognise the idiosyncrasies and prejudices embedded into research. Despite being subject to our frailties and the zeitgeist, once recognised, these limitations are part of the strength of the discipline: it allows us, at least eventually, to discover their effect on what was once considered the most dispassionate branch of learning.

Sagan's repeated use of the word sceptical is also of great significance. Behind the multitude of experimental, analytical and mathematical methods in the scientific toolkit, scepticism should be the universal constant. As well as aiding the recognition of the biases mentioned above, the sceptical approach allows parsimony to take precedence over authority. It may seem a touch idealistic, especially for graduate students having to kowtow to senior faculty when seeking research positions, but open-minded young turks are vital in overcoming the conservative old guard. Einstein's contempt for authority is well-known, as he made clear by delineating unthinking respect for it as the greatest enemy of truth. I haven't read Stephen Jay Gould's Rocks of Ages: Science and Religion in the Fullness of Life, but from what I understand of his ideas, the distinction concerning authority marks a clear boundary worthy of his Non-Overlapping Magisteria.

3) The mystery of the beginning of all things is insoluble by us; and I for one must be content to remain an agnostic (Charles Darwin)

From the original publication of On the Origin of Species in 1859 to the present day, one of the most prominent attacks by devoutly religious critics to natural selection is the improbability of how life started without divine intervention. If we eventually find microbial life on Mars - or larger organisms on Titan, Europa or Enceladus - this may turn the tide against such easy a target, but one thing is for certain: Darwin did not attempt to detail the origin of life itself. Although he stated in a letter to a fellow scientist: "But if (and Oh! What a big if!) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, lights, heat, electricity etc., present that a protein compound was chemically formed ready to undergo still more complex changes" there are no such broad assumptions in his public writings.

As it turns out, Darwin may have got some of the details correct, although the 'warm little pond' is more likely to have been a deep sea volcanic vent. But we are still far from understanding the process by which inert chemicals started to make copies of themselves. It's been more than sixty years since Harold Urey and Stanley Miller at the University of Chicago produced amino acids simply by recreating what conditions were then thought to resemble on the early Earth. Despite numerous variations on this classic experiment in subsequent decades, we are little closer to comprehending the origin of life. So it was appropriate that Darwin, who was not known for flights of fancy (he once quipped "My mind seems to have become a kind of machine for grinding general laws out of large collections of facts") kept speculation out of his strictly evidence-based publications.

Just as Darwin has been (at times, deliberately) misquoted by religious fundamentalists determined to undermine modern biology, his most vociferous disciple today, Richard Dawkins, has also been selectively quoted to weaken the scientific arguments. For example, printing just "The essence of life is statistical improbability on a colossal scale" as opposed to the full text from The Blind Watchmaker discussing cumulative natural selection, is a cheap literary device that lessens the critique, but only if the reader is astute enough to investigate the original source material.

4) Anybody who has been seriously engaged in scientific work of any kind realizes that over the entrance to the gates of the temple of science are written the words: 'Ye must have faith.' (Max Planck)

Thomas Henry Huxley (A.K.A. Darwin's Bulldog) once wrote that "Science is organized common sense where many a beautiful theory was killed by an ugly fact." But that was back in the Nineteenth Century, when classical physics ruled and scientists predicted a time in the near future when they would understand all the fundamentals of the universe. In these post-modern, quantum mechanical times, uncertainty (or rather, Uncertainty) is key, and common sense goes out of the window with the likes of entanglement, etc.

Back to Planck. It seems fairly obvious that his quote tallies closely with the physics of the past century, in which highly defined speculation and advanced mathematics join forces to develop hypotheses into theories long before hard evidence can be gleaned from the experimental method. Some of the key players in quantum physics have even furthered Copernicus' preference for beautiful mathematics over observation and experiment. Consider the one-time Lucasian Professor of Mathematics Paul Dirac's partiality for the beauty of equations over experimental results, even though he considered humanity's progress in maths to be 'feeble'. The strangeness of the sub-atomic world could be seen as a vindication of these views; another of Planck's quotes is "One must be careful, when using the word, real."

Leaving aside advanced physics, there are examples in the other scientific disciplines that confirm Planck's view. In the historical sciences, you can never know the full story. For example, fossils can provide some idea of the how and when a species diverged into two daughter species, but not necessarily the where and why (vis-à-vis ecological 'islands' in the wider sense). Not that this lack of precision should be taken as doubt of validity. As evolutionary biologist Stephen Jay Gould once said, a scientific fact is something "confirmed to such a degree that it would be perverse to withhold provisional assent."  So what might appear to primarily apply to one segment of the scientific endeavour can be applied across all of science.

5) Space travel is utter bilge (Richard van der Riet Woolley, Astronomer Royal)

In 1956 the then-Astronomer Royal made a prediction that was thoroughly disproved five years later with Yuri Gagarin's historic Vostock One flight. The quote has been used ever since as an example of how blind obedience to authority is unwise. But Woolley's complete quote was considerably more ambiguous: "It's utter bilge. I don't think anybody will ever put up enough money to do such a thing...What good would it do us? If we spent the same amount of money on preparing first-class astronomical equipment we would learn much more about the universe...It is all rather rot." He went on say: "It would cost as much as a major war just to put a man on the moon." In fact, the latter appears to be quite accurate, and despite the nostalgia now aimed at the Apollo era, the lack of any follow-up only reinforces the notion that the race to the moon was simply the ultimate example of Cold War competition. After all, only one trained geologist ever got there!

However, I'm not trying to defend the edited version of Woolley's inopportune statement since he appears to have been an armchair naysayer for several decades prior to his most famous quote. Back in 1936, his review of Rockets Through Space: The Dawn of Interplanetary Travel by the first president of the British Interplanetary Society (BIS) was even more pessimistic: "The whole procedure [of shooting rockets into space]...presents difficulties of so fundamental a nature, that we are forced to dismiss the notion as essentially impracticable, in spite of the author's insistent appeal to put aside prejudice and to recollect the supposed impossibility of heavier-than-air flight before it was actually accomplished." Again, it might appear in hindsight that Woolley deserves scorn, were it not for the fact that nearly everyone with some knowledge of space and aeronautics was of a similar opinion, and the opposition were a few 'cranks' and the like, such as BIS members.

The moral of the this story is that it is far from difficult to take a partial quote, or a statement out of context, and alter a sensible, realistic attitude (for its time and place) into an easy piece of fun. A recent tweet I saw was a plaintive request to read what Richard Dawkins actually says, rather than what his opponents claim he has says. In a worst-case scenario, quote-mining makes it possible to imply the very opposite of an author's intentions. Science may not be one hundred percent provable, but it's by the far the best approach we have to finding out that wonderful thing we humans call 'the truth'.

Tuesday 18 February 2014

Discovery FM: science programming on the radio

Considering the large amount of trash on satellite TV documentary channels (yes you, Discovery Channel and National Geographic, with your constant stream of gullible, gibbering 'experts' hunting down Bigfoot, UFOs and megalodon), I thought I'd do a bit of research into science programming on that long side-lined medium, radio.

Having grown up with BBC Radio in the UK I've always listened to a variety of documentaries, particularly on Radio Four. Although I now live in New Zealand one of the joys of the internet is the ability to listen to a large number of BBC science and natural history documentaries whenever I want. The BBC Radio website has a Science and Nature section with dozens of STEM (Science, Technology, Engineering and Mathematics) programmes from latest news shows such as Inside Science and Material World to series with specific subject matter such as the environmental-themed Costing the Earth.

A long-running live broadcast BBC series that covers an eclectic variety of both scientific and humanities subjects is novelist and history writer Melvyn Bragg's In Our Time. Over the past sixteen years distinguished scientific guests have explored numerous STEM topics in almost two hundred episodes. Although much of the science-themed material leans towards historical and biographical aspects, there has also been some interesting examination of contemporary scientific thought. The programme is always worth listening to, not least for Bragg's attempt to understand - or in the case of spectroscopy, pronounce - the complexities under discussion.

One of my other favourites is the humorous and wide-ranging The Infinite Monkey Cage, hosted by comedian Robin Ince and physicist/media star Brian Cox. Each episode features a non-scientist as well as several professionals, the former serving as a touchstone to ensure any technicalities are broken down into public-friendly phrasing. Many of the show's topics are already popular outside of science, such as SETI (the Search for Extra-Terrestrial Intelligence) and comparisons of science fiction to fact. The programme is well worth a listen just for the incidental humour: you can almost hear steam coming out of Brian Cox's ears whenever a guest mentions the likes of astrology. Despite having a former career as a professional pop keyboard player, the good professor is well known for his disparaging marks about philosophy and other non-scientific disciplines, cheekily referring to the humanities in one episode as 'colouring in'.

I confess that there are still many episodes I have yet to listen to, although I notice that a fair few of the programme descriptions are similar to topics I would like to discuss in this blog. In fact, an episode from December 2013 entitled "Should We Pander to Pandas?" bares a startling similarity to my post on wildlife conservation from three months earlier! Coincidence, zeitgeist or are the BBC cribbing my ideas? (It wouldn't be the first time, either...)

A final example of an excellent series is the hour-long live talk show The Naked Scientists, covering both topical stories and more general themes. In addition to the programme itself, the related website includes DIY experiments using materials from around the home and an all-embracing forum.

Although consisting of far fewer series, Radio New Zealand also broadcasts a respectable variety of science programming. There are currently thirty or so titles available in the science and factual section on line, including some interesting cross-overs. For instance, back in 2006 the late children's author Margaret Mahy discussed her interest in science and the boundaries between fact and fiction in The Catalogue of the Universe. Thanks to the internet, it isn't just radio stations that supply audio programming either: the Museum of New Zealand, Te Papa Tongarewa in Wellington, releases ad-hoc Science Express podcasts. So far I've been very impressed with the range on offer and it's always good to find in-depth discussion on local science stories.

The United States has a decent range of science programmes on various internet streams and the non-profit NPR network, with the related NPR website dividing the material into obvious themes such as the environment, space, energy and health. Most the programmes are very short - as little as three minutes - and often consist of news items, usually accompanied by a good written précis. NPR also distributes Public Radio International's weekly call-in talk show Science Friday, which is extremely popular as a podcast.  The associated website contains videos as well as individual articles from the radio show, although interestingly, the archive search by discipline combines physics and chemistry into one topic but separates nature, biology, and human brain and body, into three separate topics.

Planetary Radio is the Planetary Society's thirty-minute weekly programme related to the organisation's interests, namely astronomy, space exploration and SETI. For any fan of Carl Sagan's - and now Neil deGrasse Tyson's - Cosmos, it's pretty much unmissable.

Talking of which, various scientists now take advantage of podcasting for their own, personal audio channels. A well-known example is deGrasse Tyson's StarTalk, which as the name suggests, frequently concentrates on space-related themes. In addition to the serious stuff, there are interviews with performing artists and their opinion on science and once in a while some brilliant comedy too: the episode earlier this month in which Tyson speaks to God (who admits that amongst other divine frivolities, monkeys and apes were created as something to laugh at and that the universe really is just six thousand or so years old) is absolutely priceless.

Physicist Michio Kaku has gone one further by hosting two weekly shows: the live, three-hour Science Fantastic talk show and the hour-long Exploration. The former's website incorporates an archive of videos, some as might be expected concentrating on futurology, whilst the talk show itself often covers fruity topics verging on pseudoscience. The latter series is generally more serious but the programme is slightly spoilt by the frequent book-plugging and over-use of baroque background music.

The good news is that far from reducing radio the internet has developed a new multi-media approach to traditional broadcasting, with comprehensive archives of material available from a multitude of sources. One thing the US, UK and New Zealand programming has in common is the inclusion of celebrities, especially actors, both to enhance series profile and to keep content within the realm of comprehension by a general audience.

All in all, I'm pleasantly surprised by the variety and quality of audio programming emerging from various nations, as opposed to the pandering to new age, pseudoscientific and plain woolly thinking that frequently passes for science television broadcasting. Even book shops aren't immune: I was recently disappointed to notice that a major New Zealand chain book store had an 'Inspiration' section twice the size of its STEM material. So the next time you see a team of researchers in on a quest for a species of shark that has been extinct for over a million years, why not relax with good old-fashioned, steam-powered radio instead?

Saturday 19 October 2013

School sci-tech fairs: saviours of the future?

It's frequently said that a picture is worth a thousand words, but could it be true that hands-on experiments are worth even more when it comes to engaging children in science? As the current Google / iPad / your-designation-of-choice generation is being bombarded from the egg onwards with immense amounts of audio-visual noise, how will they get the opportunity to learn that science can be both rewarding and comprehensible when textbooks seem so dull by comparison with their otherwise digitally-enhanced lives?

The infant school my daughters attend recently held a science and technology exhibition based on the curriculum studied during the last term. An associated open evening (colloquially labelled a 'Sci-tech fair') showed that parents too could delight in simple hands-on demonstrations as well as gain an appreciation of the science that their five- to eleven-year olds practice.

In addition to the experiments, both the long-term projects undertaken over several months and those carried out on the night, the entries for a science-themed photographic competition gave interesting insights into the mentality of pre-teens today. All the submissions included a brief explanatory statement and ranged from reportage to self-organised experimentation. One entry that I can only assume was entirely the child's own work especially caught my eye: a photograph of their pet dog standing in front of half a dozen identically-sized sheets of paper, on each of which was a same-sized mound of the dog's favourite food. The sheets of paper were each a different colour, the hypothesis being whether the dog's choice of food was influenced by the colour it was placed upon.  I say it was probably the child's work since I assume most adults know that dogs do not see as wide a variety of colours as humans, being largely restricted to the blues and yellows. But what a fantastic piece of work from a circa ten year old, nonetheless!

Apart from highlighting the enormous changes in science education - chiefly for the better, in my opinion - since my UK school days in the 1970s and 80s, the exhibition suggested that there is an innate wealth of enthusiasm at least for the practice of science, if not for the underlying theories.  If only more people could have access to such events, perhaps the notion that science largely consists of dry abstractions and higher mathematics would be dispelled. After all, if children in their first year of school can practice scientific methodology, from hypothesis via experimentation to conclusion, it can't be all that difficult, can it?

Each experiment in the sci-tech exhibition was beautifully described, following the structure of an aim or hypothesis, an experimental procedure, and then the results and conclusions; in effect, the fundamentals of the scientific method. Themes varied widely, from wave action to solar power (miniature cells being used to drive fans in scale model houses), animal husbandry to biological growth and decay. One of my favourite experiments involved the use of Mentos (mints, if you don't know the brand) to produce miniature geysers when added to various soft drinks. Much to the children's surprise the least favoured contender of the half dozen tried, Diet Coke, won outright, producing a rush of foam over five metres high. The reasons behind this result can be found on the Science Kids website, from which several of the term's projects were taken. The site looks to be a fantastic resource for both teachers and enthusiastic parents who want to the entire family pursue out-of-school science. I'll no doubt be exploring it in detail over the coming year...

Having dabbled in the world of commercially-available science-themed toys the description of how to make your own volcanic eruption experiment on the Science Kids site led my daughters and I to spend a happy Sunday afternoon creating red and yellow lava flows in the garden, courtesy of some familiar ingredients such as sodium bicarbonate and citric acid. They may not have learnt the exact nature of volcanism, but certainly understood something about creating chemical reactions.

Make your own volcano kit
Have fun making your own miniature volcano!

Although these hands-on procedures are considerably more interesting than the dull-as-dishwater investigations I undertook at senior school, the idea of children's participation in experiments is nothing new. The Royal Institution in London has been holding its annual Christmas Lecture series since 1825, with audience members frequently invited to aid the speaker. Although I've never attended myself, I remember viewing some of the televised lectures, with excited children aiding and abetting in the - at times - explosive demonstrations. The lecturers over the past few decades have included some of the great names in science popularisation, from Sir David Attenborough to Richard Dawkins, Carl Sagan to Marcus du Sautoy. Anyone care to bet how long it will be before Brian Cox does a series (if he can find time in his busy media schedule, that is)?

Getting to grips with the scientific method via experimental procedures is a great start for children: it may give them the confidence to think critically and question givens; after all, how many people - even students at top universities - still think the seasons are caused by solar proximity? If that's a bit of a tall order, perhaps hands-on experimenting might help children to appreciate that many scientific concepts are not divorced from everyday experience but with a little knowledge can be seen all around us.

Of course it's far more difficult to maintain interest in science during adolescence, but New Zealand secondary schools aren't left out thanks to the National School Science and Technology Awards and the National Institute of Water and Atmospheric Research (NIWA)-sponsored regional Science and Technology Fairs. It's one thing to give scholarships to scientifically-gifted - or at least keen - children, but quite another to offer a wider audience the opportunities these programmes offer. All in all, it's most encouraging. I even have the sneaky suspicion that had such inspiration been available when I was at school, I might have eschewed the arts for a career in a scientific discipline - at least one with minimal complex mathematics, that is!

Tuesday 18 June 2013

Deserving dollars: should mega budget science be funded in an age of austerity?

With the UK narrowly avoiding France's fate of a triple dip recession, I thought I would bite the bullet and examine some of the economics of current science. In a time when numerous nations are feeling severe effects due to the downturn, it is ironic that there are a multitude of science projects with budgets larger than the GDP of some smaller nations. So who funds these ventures and are they value for money, or even worthwhile, in these straitened times? Here are a few examples of current and upcoming projects, with the lesser known the project the more the information supplied:

National Ignition Facility

The world's most powerful laser was designed with a single goal: to generate net energy from nuclear fusion by creating temperatures and pressures similar to those in the cores of stars. However, to state that the NIF has not lived up to expectation would be something of an understatement. According to even the most conservative sources, the original budget of the Lawrence Livermore National Laboratory project has at the very least doubled if not quadrupled to over US$4 billion, whilst the scheduled operational date came five years overdue.

I first learned of the project some years ago thanks to a friend who knew one of the scientists involved. The vital statistics are astonishing, both for the scale of the facility and the energies involved. But it seems that there may be underlying problems with the technology. Over-reliance on computer simulations and denial of deleterious experimental results on precursor projects, as well as the vested interests of project staffers and the over-confident potential for military advances, have all been suggested as causes for what history may conclude as a white elephant. So perhaps if you are looking for an archetypal example of how non-scientific factors have crippled research, this may well be it.

Unlike all the other projects discussed, the National Ignition Facility is solely funded by one nation, the USA. Of course, it could be argued that four billion dollars is a bargain if the project succeeded, and that it is today's time-precious society that needs to learn patience in order to appreciate the long-term timescales required to overcome the immense technological challenges. Nuclear fusion would presumably solve many of todays - and the foreseeable futures - energy requirements whilst being rather more environmentally friendly than either fossil fuels or fission reactors. The potential rewards are plain for all to see.

However, the problems are deep-rooted, leading to arguments against the development of laser-based fusion per se. Alternative fusion projects such as the Joint European Torus and the $20 billion ITER - see an earlier post on nuclear fusion research for details - use longer-established methods. My verdict in a nutshell: the science was possibly unsound from the start and the money would be better spent elsewhere. Meanwhile, perhaps the facility could get back a small portion of its funding if Star Trek movies continue to hire the NIF as a filming location!

The International Space Station

I remember the late Carl Sagan arguing that the only benefit of the ISS that couldn’t be achieved via cheaper projects such as – during the Space Shuttle era - the European Space Agency’s Spacelab, was research into the deleterious effects on health of long-duration spaceflight. So at $2 billion per year to run is it worthwhile, or but another example of a fundamentally flawed project? After all, as it is the station includes such non-scientific facets as the ultimate tourist destination for multi-millionaires!

Sometimes referred to as a lifeline for American and Russian aerospace industries (or even a way to prevent disaffected scientists in the latter from working for rogue states), I have been unable to offer a persuasive argument as to why the money would not have been better spent elsewhere. It is true that there has been investigation into vaccines for salmonella and MRSA, but after twelve years of permanent crewing on board the station, just how value for money has this research been? After all, similar studies were carried out on Space Shuttle flights in previous few decades, suggesting that the ISS was not vital to these programmes. The Astronomer Royal Lord Martin Rees has described as it as a 'turkey in the sky', siphoning funds that could have been spent on a plethora of unmanned missions such as interplanetary probes. But as we should be aware, it usually isn't a case that money not spent on one project would automatically become available for projects elsewhere.

On a positive scientific note, the station has played host to the $2 billion Alpha Magnetic Spectrometer - a key contender in the search for dark matter - which would presumably have difficulty finding a long-duration orbital platform elsewhere. But then this is hardly likely to excite those who want immediate, practical benefits from such huge expenditure.

The ISS has no doubt performed well as a test bed for examining the deterioration of the human body due to living in space, if anything seriously weakening the argument for a manned Mars mission in the near future. Perhaps one other area in which the station has excelled has been that of a focal point for promoting science to the public, but surely those who follow in Sagan’s footsteps - the U.K.'s Brian Cox for one - can front television series with a similar goal for the tiniest fraction of the cost?

The Large Hadron Collider

An amazing public-relations success story, considering how far removed the science and technology are from everyday mundanity, the world's largest particle accelerator requires $1 billion per year to operate on top of a construction budget of over $6 billion. With a staff of over 10,000 the facility is currently in the midst of a two-year upgrade, giving plenty of time for its international research community to analyse the results. After all, the Higgs Boson A.K.A. 'God particle' has been found…probably.

So if the results are confirmed, what next? Apparently, the facility can be re-engineered for a wide variety of purposes, varying from immediately pragmatic biomedical research on cancer and radiation exposure to the long-term search for dark matter. This combination of practical benefits with extended fundamental science appears to be as good a compromise as any compared to similar-scale projects. Whether similar research could be carried out by more specialised projects is unknown. Does anyone know?

As for the future of mega-budget schemes, there are various projects in development extending into the next decade. The Southern Hemisphere is playing host to two large international collaborations: the Square Kilometre Array is due to begin construction in eleven nations - excluding its UK headquarters - in 2016, but it will be around eight years before this $2 billion radio telescope array is fully operational. Meanwhile the equally unimaginatively-named European Extremely Large Telescope is planned for a site in Chile, with an even longer construction period and a price tag approaching $1.5 billion. Both projects are being designed for a variety of purposes, from dark matter investigation to searching for small (i.e. Earth-sized) extra-solar planets with biologically-modified atmospheres.

At this point it is pertinent to ask do extremely ambitious science projects have to come with equally impressive price tags? Personally I believe that with a bit more ingenuity a lot of useful research can be undertaken on far smaller budgets. Public participation in distributed computing projects such as Folding@home and Seti@home, in which raw data is processed by home computers, is about as modest an approach as feasible for such large amounts of information.

An example of a long-term project on a comparatively small budget is the US-based Earthscope programme, which collects and analyses data including eminently practical research into seismic detection. With a construction cost of about $200 million and annual budget around a mere $125 million this seems to be a relative bargain for a project that combines wide-scale, theoretical targets with short-term, pragmatic gains. But talking of practical goals, there are other scientific disciplines crying out for a large increase in funding. Will the explosive demise of a meteor above the Russian city of Chelyabinsk back in February act as a wake-up call for more research into locating and deflecting Earth-crossing asteroids and comets? After all, the 2014 NASA budget for asteroid detection projects is barely over the hundred million dollar mark!

I will admit to some unique advantages to enormous projects, such as the bringing together of researchers from the funding nations that may lead to fruitful collaboration. This is presumably due to the sheer number of scientists gathered together for long periods, as opposed to spending just a few days at an international conference or seminar, for instance. Even so, I cannot help but feel that the money for many of the largest scale projects could be bettered used elsewhere, solving some of the immediate problems facing our species and ecosystem.

Unfortunately, the countries involved offer their populations little in the way of voice as to how public money is spent on research. But then considering the appalling state of science education in so many nations, as well as the short shrift that popular culture usually gives to the discipline, perhaps it isn’t so surprising after all. If we want to make mega-budget projects more accountable, we will need to make fundamental changes to the status of science in society. Without increased understanding of the research involved, governments are unlikely to grant us choice.

Monday 29 October 2012

From geek to guru: can professional scientists be successful expositors (and maintain careers in both fields)?

The recent BBC TV series Orbit: Earth's Extraordinary Journey gave me food for thought: although presenter Helen Czerski is a professional physicist she was burdened with a co-presenter who has no formal connection with science, namely Kate Humble. You have to ask: why was Humble needed at all? I'll grant that there could have been a logistics issue, namely getting all the locations filmed in the right season within one year, but if that was the case why not use another scientist, perhaps from a different discipline? Were the producers afraid a brace of scientists would put the public off the series?

The old days of senior figures pontificating as if in a university lecture theatre are long gone, with blackboard diagrams and scruffy hair replaced by presenters who are keen to prove their non-geek status via participation in what essentially amount to danger sports in the name of illustrating examples. Okay, so the old style could be very dry and hardly likely to be inspirational to the non-converted, but did Orbit really need a non-scientist when Helen Czerski (who is hardly new to television presenting) can deliver to camera whilst skydiving? In addition, there are some female presenters, a prominent British example being Alice Roberts, who have been allowed to solely present several excellent series, albeit involving science and humanities crossovers (and why not?)

But going back to Kate Humble, some TV presenters seems to cover such a range of subject matter that it makes you wonder if they are just hired faces with no real interest (and/or knowledge) in what they are espousing: “just read the cue cards convincingly, please!” Richard Hammond - presenter of light entertainment show Top Gear and the (literally) explosive Brainiac: Science Abuse has flirted with more in-depth material in Richard Hammond's Journey To The Centre Of The Planet, Richard Hammond's Journey To The Bottom Of The Ocean and Richard Hammond's Invisible Worlds. Note the inclusion of his name in the titles – just in case you weren't aware who he is. Indeed, his Top Gear co-presenter James May seems to be genre-hopping in a similar vein, including James May's Big Ideas, James May's Things You Need to Know, James May on the Moon and James May at the Edge of Space amongst others, again providing a hint as to who is fronting the programmes. Could it be that public opinion of scientists is poor enough - part geek, part Dr Strangelove - to force producers to employ non-scientist presenters with a well-established TV image, even if that image largely consists of racing cars?

Popular science books from Cosmos to A Brief History of Time

Having said that, science professionals aren't infallible communicators: Sir David Attenborough, a natural sciences graduate and fossil collector since childhood, made an astonishing howler in his otherwise excellent BBC documentary First Life. During an episode that ironically included Richard 'Mr Trilobite' Fortey himself, Sir David described these organisms as being so named due to their head/body/tail configuration. In fact, the group's name stems somewhat obviously from tri-lobes, being the central and lateral lobes in their body plan. It was an astounding slip up and gave me food for thought as to whether anyone on these series ever double checks the factual content, just to make sure it wasn't copied off the back of a cereal packet.

Another possible reason for using non-science presenters is that in order to make a programme memorable, producers aim to differentiate their expositors as much as possible. I've already discussed the merits of two of the world's best known scientists, Stephen Hawking and Richard Dawkins, and the unique attributes they bring to their programmes, even if in Dawkins' case this revolves around his attitude to anyone who has an interest in any form of unproven belief. I wonder if he extends his disapprobation to string theorists?

What is interesting is that whereas the previous generation of popular science expositors achieved fame through their theories and eventually bestselling popularisations, the current crop, of whom Helen Czerski is an example, have become well-known directly through television appearances. That's not to say that the majority of people who have heard of Stephen Hawking and Richard Dawkins have read The Selfish Gene or A Brief History of Time. After all, the former was first published in 1976 and achieved renown in academic circles long before the public knew of Dawkins. Some estimates suggest as little as 1% of the ten million or so buyers of the latter have actually read it in its entirety and in fact there has been something of a small industry in reader's companions, not to mention Hawking's own A Briefer History of Time, intended to convey in easier-to-digest form some of the more difficult elements of the original book. In addition, the US newspaper Investors Business Daily published an article in 2009 implying they thought Hawking was an American! So can you define fame solely of being able to identify a face with a name?

In the case of Richard Dawkins it could be argued that he has a remit as a professional science communicator, or at least had from 1995 to 2008, due to his position during this time as the first Simonyi Professor for the Public Understanding of Science. What about other scientists who have achieved some degree of recognition outside of their fields of study thanks to effective science communication? Theoretical physicist Michio Kaku has appeared in over fifty documentaries and counting and has written several bestselling popular science books , whilst if you want a sound bite on dinosaurs Dale Russell is your palaeontologist. But it's difficult to think of any one scientist capable of inspiring the public as much as Carl Sagan post- Cosmos. Sagan though was the antithesis of the shy and retiring scientist stereotype and faced peer accusations of deliberately cultivating fame (and of course, fortune) to the extent of jumping on scientific bandwagons solely in order to gain popularity. As a result, at the height of his popularity and with a Pulitzer Prize-winning book behind him, Sagan failed to gain entry to the US National Academy of Sciences. It could be argued that no-one has taken his place because they don't want their scientific achievements belittled or ignored by the senior science establishment: much better to claim they are a scientist with a sideline in presenting, rather than a communicator with a science background. So in this celebrity-obsessed age, is it better to be a scientific shrinking violet?

At this point you might have noticed that I've missed out Brian Cox (or Professor Brian Cox as it states on the cover of his books, just in case you thought he was an ex-keyboard player who had somehow managed to wangle his way into CERN.) If anyone could wish to be Sagan's heir - and admits to Sagan as a key inspiration - then surely Cox is that scientist. With a recent guest appearance as himself on Dr Who and an action hero-like credibility, his TV series having featured him flying in a vintage supersonic Lightening jet and quad biking across the desert, Cox is an informal, seemingly non-authoritative version of Sagan. A key question is will he become an egotistical prima donna and find himself divorced from the Large Hadron Collider in return for lucrative TV and tie-in book deals?

Of course, you can't have science without communication. After all, what's the opposite of popular science: unpopular science? The alternative to professionals enthusing about their subject is to have a mouth-for-hire, however well presented; delineating material they neither understand nor care about. And considering the power that non-thinking celebrities appear to wield, it's vital that science gets the best communicators it can, recruited from within its own discipline. The alternative can clearly be seen by last years' celebrity suggestion that oceans are salty due to whale sperm. Aargh!