Showing posts with label Cosmos. Show all posts
Showing posts with label Cosmos. Show all posts

Friday, 28 July 2017

Navigating creation: A Cosmic Perspective with Neil deGrasse Tyson


I recently attended an interesting event at an Auckland venue usually reserved for pop music concerts. An audience in the thousands came to Neil deGrasse Tyson: A Cosmic Perspective, featuring the presenter of Cosmos: A Spacetime Odyssey and radio/tv show StarTalk. The 'Sexiest Astrophysicist Alive' presented his brand of science communication to an enormous congregation (forgive the use of the word) of science fans aged from as young as five years old. So was the evening a success? My fellow science buffs certainly seemed to have enjoyed it, so I decided it would be worthwhile to analyse the good doctor's method of large-scale sci-comm.

The evening was split into three sections, the first being the shortest, a primer as to our location in both physical and psychological space-time. After explaining the scale of the universe via a painless explanation of exponents, Dr Tyson used the homespun example of how stacking the 'billions' (which of course he declared to be Carl Sagan's favourite word) of Big Macs so far sold could be stacked many times around the Earth's circumference and even then extend onwards to the Moon and back. Although using such a familiar object in such unusual terrain is a powerful way of taking people outside their comfort territory, there was nothing new about this particular insight, since Dr Tyson has been using it since at least 2009; I assume it was a case of sticking to a tried-and-trusted method, especially when the rest of the evening was (presumably) unscripted.

Billions of Big Macs around the Earth and moon

Having already belittled our location in the universe, the remainder of the first segment appraised our species' smug sense of superiority, questioning whether extra-terrestrials would have any interest in us any more than we show to most of the biota here on Earth. This was a clear attempt to ask the audience to question the assumptions that science fiction, particularly of the Hollywood variety, has been popularising since the dawn of the Space Age. After all, would another civilisation consider us worthy of communicating with, considering how much of our broadcasting displays obvious acts of aggression? In this respect, Neil deGrasse Tyson differs markedly from Carl Sagan, who argued that curiosity would likely be a mutual connection with alien civilisations, despite their vastly superior technology. Perhaps this difference of attitude isn't surprising, considering Sagan's optimism has been negated by both general circumstance and the failure of SETI in the intervening decades.

Dr Tyson also had a few gibes at the worrying trend of over-reliance on high technology in place of basic cognitive skills, describing how after once working out some fairly elementary arithmetic he was asked which mobile app he had used to gain the result! This was to become a central theme of the evening, repeated several times in different guises: that rather than just learning scientific facts, non-scientists can benefit from practising critical thinking in non-STEM situations in everyday life.

Far from concentrating solely on astrophysical matters, Dr Tyson also followed up on topics he had raised in Cosmos: A Spacetime Odyssey regarding environmental issues here on Earth. He used Apollo 8's famous 'Earthrise' photograph (taken on Christmas Eve 1968) as an example of how NASA's lunar landing programme inspired a cosmic perspective, adding that organisation such as the National Oceanic and Atmospheric Administration and the Environmental Protection Agency were founded during the programme. His thesis was clear: what began with political and strategic causes had fundamental benefits across sectors unrelated to space exploration; or as he put it "We're thinking we're exploring the moon and we discovered the Earth for the first time."

The second and main part of the event was Tyson's discussion with New Zealand-based nanotechnologist and science educator Michelle Dickinson, A.K.A. Nanogirl. I can only assume that there aren't any New Zealand astronomers or astrophysicists as media-savvy as Dr Dickinson, or possibly it's a case of celebrity first and detailed knowledge second, with a scientifically-minded interviewer deemed to have an appropriate enough mindset even if not an expert in the same specialisation.

The discussion/interview was enlightening, especially for someone like myself who knows Neil deGrasse Tyson as a presenter but very little about him as a person. Dr Tyson reminisced how in 1989 he accidentally become a media expert solely on the basis of being an astrophysicist and without reference to him as an Afro-American, counter to the prevailing culture that only featured Afro-Americans to gain their point of view.

Neil deGrasse Tyson: A Cosmic Perspective

Dr Tyson revealed himself to be both a dreamer and a realist, the two facets achieving a focal point with his passion for a crewed mission to Mars. He has often spoken of this desire to increase NASA's (comparatively small) budget so as reinvigorate the United States via taking humans out from the humdrum comfort zone of low earth orbit. However, his understanding of how dangerous such a mission would be led him to state he would only go to Mars once the pioneering phase was over!

His zeal for his home country was obvious - particularly the missed opportunities and the grass roots rejection of scientific expertise prevalent in the United States - and it would be easy to see his passionate pleas for the world to embrace Apollo-scale STEM projects as naïve and out-of-touch. Yet there is something to be said for such epic schemes; if the USA is to rise out of its present lassitude, then the numerous if unpredictable long-term benefits of, for example, a Mars mission is a potential call-to-arms.

The final part of the evening was devoted to audience questions. As I was aware of most of the STEM and sci-comm components previously discussed this was for me perhaps the most illuminating section of the event. The first question was about quantum mechanics, and so not unnaturally Dr Tyson stated that he wasn't qualified to answer it. Wouldn't it be great if the scientific approach to expertise could be carried across to other areas where people claim expert knowledge that they don't have?

I discussed the negative effects that the cult of celebrity could have on the public attitude towards science back in 2009 so it was extremely interesting to hear questions from several millennials who had grown up with Star Talk and claimed Neil deGrasse Tyson as their idol. Despite having watched the programmes and presumably having read some popular science books, they fell into some common traps, from over-reliance on celebrities as arbiters of truth to assuming that most scientific theories rather than just the cutting edge would be overturned by new discoveries within their own lifetimes.

Dr Tyson went to some lengths to correct this latter notion, describing how Newton's law of universal gravitation for example has become a subset of Einstein's General Theory of Relativity. Again, this reiterated that science isn't just a body of facts but a series of approaches to understanding nature. The Q&A session also showed that authority figures can have a rather obvious dampening effect on people's initiative to attempt critical analysis for themselves. This suggests a no-win situation: either the public obediently believe everything experts tell them (which leads to such horrors as the MMR vaccine scandal) or they fail to believe anything from STEM professionals, leaving the way open for pseudoscience and other nonsense. Dr Tyson confirmed he wants to teach the public to think critically, reducing gullibility and thus exploitation by snake oil merchants. To this end he follows in the tradition of James 'The Amazing' Randi and Carl Sagan, which is no bad thing in itself.

In addition, by interviewing media celebrities on StarTalk Dr Tyson stated how he can reach a far wider audience than just dedicated science fans. For this alone Neil deGrasse Tyson is a worthy successor to the much-missed Sagan. Let's hope some of those happy fans will be inspired to not just dream, but actively promote the cosmic perspective our species sorely needs if we are to climb out of our current doldrums.

Monday, 8 May 2017

Weather with you: meteorology and the public perception of climate change

If there's one thing that appears to unite New Zealanders with the British it is the love of discussing the weather. This year has been no exception, with New Zealand's pre-summer forecasts - predicting average temperatures and rainfall - proving wildly inaccurate. La Niña has been blamed for what Wellingtonians have deemed a 'bummer summer', January having provided the capital with its fewest 'beach days' of any summer in the last thirty years. Sunshine hours, temperature, rainfall and wind speed data from the MetService support this as a nationwide trend; even New Zealand flora and fauna have been affected with late blossoming and reduced breeding respectively.

However, people tend to have short memories and often recall childhood weather as somehow superior to that of later life. Our rose-tinted spectacles make us remember long, hot summer school holidays and epic snowball fights in winter, but is this a case of remembering the hits and forgetting the misses (meteorologically speaking)? After all, there are few things more boring than a comment that the weather is the same as the previous ten comments and surely our memories of exciting outdoor ventures are more prominent than being forced to stay indoors due to inclement conditions?

Therefore could our fascination with weather but dubious understanding - or even denial - of climate change be due to us requiring personal or even emotional involvement in a meteorological event? Most of us have had the luck not to experience extreme weather (or 'weather bombs' as the media now term them), so unless you have been at the receiving end of hurricanes or flash floods the weather is simply another aspect of our lives, discussed in everyday terms and rarely examined in detail.

Since we feel affected by weather events that directly impact us (down to the level of 'it rained nearly every day on holiday but the locals said it had been dry for two months prior') we have a far greater emotional response to weather than we do to climate. The latter appears amorphous and almost mythical by comparison. Is this one of the reasons that climate change sceptics achieve such success when their arguments are so unsupported?

Now that we are bombarded with countless pieces of trivia, distracting us from serious analysis in favour of short snippets of multimedia edutainment, how can we understand climate change and its relationship to weather? The standard explanation is that weather is short term (covering hours, days or at most weeks) whilst climate compares annual or seasonal variations over far longer timeframes. Neil deGrasse Tyson in Cosmos:A Spacetime Odyssey made the great analogy that weather is like the zigzag path of a dog on a leash whereas its owner walks in a straight line from A to B. So far so good, but there's not even a widespread designation for the duration that counts as valid for assessing climate variability.

As such this leads us to statistics. Everyone thinks they understand the word 'average' but averages can represent the mean, median or mode. Since the period start and end date can be varied, as can the scaling on infographics (a logarithmic axis, for example), these methods allow a single set of statistics to be presented in a wide variety of ways.

The laws of probability rear their much-misinterpreted head too. The likelihood of variation may change wildly, depending on the length of the timeframe: compare a five-year block to that of a century and you can see that climate statistics is a tricky business; what is highly improbable in the former period may be inevitable over the latter. As long as you are allowed to choose the timeframe, you can skew the data to support a favoured hypothesis. So much then for objective data!

By comparison, if someone is the recipient of a worse than expected summer, as per New Zealand in 2017, then that personal experience may well be taken as more important than all the charts of long-term climate trends. It might just be the blink of an eye in geological terms, but being there takes precedence over far less emotive science and mathematics.

Perhaps then we subconsciously define weather as something that we feel we experience whilst climate is a more abstract notion, perhaps a series of weather events codified in some sort of order? How else can climate change deniers, when faced with photographs proving glacial or polar cap shrinkage, offer alternative explanations to global warming?

This is where politics comes into the mix. Whereas weather has little obvious involvement with politics, climate has become heavily politicised in the past thirty years, with party lines in some nations (mentioning no names) clearly divided. Although some of the naysayers have begun to admit global warming appears to be happening - or at least that the polar caps and glaciers are melting - they stick to such notions that (a) it will be too slow to affect humans - after all, there have been far greater swings in temperature in both directions in previous epochs - and (b) it has natural causes. The latter implies there is little we can do to mitigate it (solar output may be involved, not just Earth-related causes) and so let's stick our head in the sand and do some ostrich impressions.

As an aside, I've just finished reading a 1988 book called Prehistoric New Zealand. Its three authors are a palaeontologist (Graeme Stevens), an archaeologist (Beverley McCulloch)  and an environmental researcher (Matt McGlone) so the content covers a wide range of topics, including the nation's geology, climate, wildlife and human impact. Interestingly, the book states if anything the climate appears to be cooling and the Earth is probably heading for the next glaciation!

Unfortunately no data is supplied to support this, but Matt McGlone has since confirmed that there is a wealth of data supporting the opposite conclusion. In 2008 the conservative American Heartland Institute published a list of 500 scientists it claimed supported the notion that current climate change has solely natural causes. McGlone was one of many scientists who asked for his name to be removed from this list, stating both his work and opinions were not in agreement with this idea.

So are there any solutions or is it simply the case that we believe what we personally experience but have a hard time coming to terms with less direct, wider-scale events? Surely there are enough talented science communicators and teachers to convince the public of the basic facts, or are people so embedded in the now that even one unseasonal rain day can convince them - as it did some random man I met on the street - that climate change is a myth?

Thursday, 28 May 2015

Presenting the universe: 3 landmark science documentary series

They say you carry tastes from your formative years with you for the rest of your life, so perhaps this explains why there are three science documentary television series that still have the power to enchant some decades after first viewing. Whilst there has been no shortage of good television science programming since - Planet Earth and the Walking with... series amongst them - there are three that remain the standard by which I judge all others:
  1. The Ascent of Man (1972) - an account of how humanity has evolved culturally and technology via biological and man-made tools. Presented by mathematician and renaissance man Jacob Bronowski.
  2. Cosmos (1980) - the history of astronomy and planetary exploration, interwoven with the origins of life. Presented by Carl Sagan (as if you didn't know).
  3. The Day the Universe Changed (1985) - a study of how scientific and technological breakthroughs in Western society generate paradigm shifts. Presented by the historian of science James Burke.

All three series have been proclaimed 'landmark' shows so it is interesting to compare their themes, viewpoints and production techniques, discovering just how similar they are in many ways. For a start, their excellent production values allowed for a wide range of international locations and historical recreations. They each have a charismatic presenter who admits to espousing a personal viewpoint, although it's quite easy to note that they get progressively more casual: if Jacob Bronowski has the appearance of a warm elder statesman then Carl Sagan is the father figure for a subsequent generation of scientists; James Burke's on-screen persona is more akin to the cheeky uncle, with a regular supply of puns, some good, some less so.

To some extent it is easy to see that the earliest series begat the second that in turn influenced the third. In fact, there is a direct link in that Carl Sagan hired several of the producers from The Ascent of Man for his own series, clearly seeing the earlier show as a template for Cosmos. What all three have is something extremely rare in other science documentaries: a passion for the arts that promotes a holistic interpretation of humanity's development; science does not exist in isolation. As such, the programmes are supported by superbly-illustrated tie-in books that extend the broadcast material from the latter two series whilst Bronowski's book is primarily a transcript of his semi-improvised monologue.

In addition to considering some of the standard examples of key developments in Western civilisation such as Ancient Greece and Galileo, the series include the occasional examination of Eastern cultures. The programmes also contain discussions of religions, both West and East. In fact, between them the series cover a vast amount of what has made the world the way it is. So not small potatoes, then!

The series themselves:

The Ascent of Man

To some extent, Jacob Bronowski was inspired by the earlier series Civilisation, which examined the history of Western arts. Both series were commissioned by David Attenborough, himself a natural sciences graduate who went on to present ground-breaking series in his own discipline as well as commissioning these landmark programmes. (As an aside, if there are any presenters around today who appears to embody the antithesis of C.P. Snow's 'the two cultures' then Sir David is surely in the top ten).

Bronowski's presentation is an astonishingly erudite (for all its improvisation) analysis of the development of our species and its technological society. Although primarily focused on the West, there is some consideration of other regions, from the advanced steel-making technology of medieval Japan to Meso-American astronomy or the relatively static culture of Easter Island. Time and again, the narrative predates the encumbrance of political correctness: that it was the West that almost solely generated our modern technological society - the 'rage for knowledge' for once outshining dogma and inertia.

Of course, it would be interesting to see how Bronowski might have written it today, in light of Jared Diamond's ground-breaking (in my humble opinion) Guns, Germs and Steel. Although he works hard to present science, the plastic arts, literature and myth as emerging from the same basic elements of our nature, it is clear that Bronowski considers the former to be much rarer - and therefore the more precious - discipline. Having said that, Bronowski makes a large number of Biblical references, primarily from the Old Testament. In light of the current issues with fundamentalism in the USA and elsewhere, it is doubtful that any science documentary today would so easily incorporate the breadth of religious allusions.

If there is a thesis underlying the series it is that considering how natural selection has provided humanity with a unique combination of mental gifts, we should use them to exploit the opportunities thus presented. By having foresight and imagination, our species is the only one capable of great heights - and, as he makes no pretence of - terrible depths. As he considers the latter, Bronowski admits that we should remain humble as to the state of contemporary knowledge and technology, which five hundred years hence will no doubt appear childlike. In addition, he states that belief in absolute knowledge can lead to arrogance; if we aspire to be gods, it can only end in the likes of Auschwitz. But his final speeches contain the wonderful notion that the path to annihilation can be avoided if science is communicated to all of society with the same vigour and zest as given to the humanities.

Cosmos

I was already an astronomy and astronautics fan when I saw this series. Its first UK broadcast slot was somewhat later than my usual bedtime, so it seemed a treat to be allowed to stay up after the rest of the family had gone to bed. Like Star Wars a few years before, it appeared to me to be an audio-visual tour-de-force; not surprisingly, both the tie-in hardback and soundtrack album arrived on my birthday that year.

Nostalgia aside, another key reason for the series' success was the charisma of the presenter himself. Much has been written of Sagan's abilities as a self-publicist, and the programmes do suffer from rather too many staring-beatifically-into-the-distance shots (as to some extent replicated more recently by Brian Cox in his various Wonders Of... series). Of course, it must have taken considerable effort to get the series made in the first place, especially in gaining a budget of over $6 million. After all, another great science populariser, the evolutionary biologist Stephen Jay Gould, never managed to gain anything beyond the occasional one-off documentary.

What is most apparent is Sagan's deep commitment to presenting science to the widest possible audience without distorting the material through over-simplification. However, in retrospect it is also obvious that he was using ideas from several scientific disciplines, such as the Miller-Urey experiment, to bolster his opinions on the likelihood of extra-terrestrial life. To some extent his co-writers reined him in, the final episode given over not to SETI but to plea for environmental stewardship.

Whilst the series is primarily concerned with a global history of astronomy and astrophysics, supplemented with first-hand accounts of planetary exploration, Sagan like Bronowski is equally at home with other scientific disciplines. He discusses the evolution of intelligence and incorporates elements of the humanities with equal aplomb. Another key element is the discussion of the role superstition and dead ends have played in the hindrance or even advancement of scientific progress, from Pythagorean mysticism, via Kepler's conflation of planetary orbits with the five Platonic solids, to Percival Lowell's imaginary Martian canals. Although Sagan repeats his earlier debunking of astrology, UFO sightings and the like, he doesn't rule out the role of emotions in the advancement of science and technology, citing for example the rocket pioneer Robert Goddard's Mars-centred epiphany.

Perhaps the primary reason that the series - despite the obvious dating of some of the knowledge - is still so engaging and why Sagan's narration is so widely quoted, is that he was a prose poet par excellence. Even when discussing purely scientific issues, his tone was such that the information could be effortlessly absorbed whilst allowing the viewer to retain a sense of wonder. Of course, Sagan had ample assistance from his two co-writers Ann Druyan and Steven Soter, as clearly proven by their scripts for the Neil deGrasse Tyson-hosted remake Cosmos: A Spacetime Odyssey. Nonetheless, it is hard to think of another presenter who could have made the original series the success it was on so many levels.

The Day the Universe Changed

Although James Burke had already made a large-scale history of science and technology series called Connections in 1978, it contained a rather different take on some of the same material. By focussing on interactive webs, the earlier series was somewhat glib, in that some of the connections could probably be replaced by equally valid alternatives.

In contrast, The Day the Universe Changed uses a more conventional approach that clearly shares some of the same perspectives as the earlier programmes. Like The Ascent of Man and the Cosmos remake, mediaeval Islamic science is praised for its inquisitiveness as well as the preservation of Classical knowledge. Burke was clearly influenced by his predecessors, even subtitling the series 'A Personal View by James Burke'. Perhaps inevitably he covers some of the same material too, although it would be difficult to create a brief history without reference to Newton or Ancient Greece.

As with Bronowski, Burke integrates scientific advances within wider society, a notable example being the rediscovery of perspective and its profound effect on contemporary art. He also supports the notion that rather than a gradual series of changes, paradigm shifts are fundamental to major scientific breakthroughs. In effect, he claims that new versions of the truth - as understood by a scientific consensus - may rely on abandonment of previous theories due to their irreconcilable differences. Having recently read Rachel Carson's 1950 The Sea Around Us I can offer some agreement: although Carson's geophysical analysis quietly screams in favour of plate tectonics, the contemporary lack of evidence lead her to state the no doubt establishment mantra of the period concerning static land masses.

What Burke constantly emphasises even more than his predecessors is that time and place has a fundamental influence on the scientific enquiry of each period. Being immersed in the preconceived notions of their culture, scientists can find it as difficult as anyone else to gain an objective attitude. In actuality, it is all but impossible, leading to such farcical dead-ends as Piltdown Man, a hoax that lasted for decades because it fulfilled the jingoistic expectations of British scientists. Burke's definition of genius is someone who can escape the givens of their background and thus achieve mental insights that no amount of methodical plodding can equal. Well, perhaps, on occasion.

The series also goes further than its predecessors in defining religion as anti-scientific on two grounds: its demand for absolute obedience in the face of logic and evidence, with reference to Galileo; or the lack of interest in progress, as with the cyclical yet static Buddhist view, content for the universe to endlessly repeat itself. Burke also shows how scientific ideas can be perverted for political ends, as with social Darwinism. But then he goes on to note that as the world gets ever more complex, and changes at an ever faster rate, non-specialists are unable to test new theories in any degree and so are having to rely on authority just as much as before the Enlightenment. How ironic!

All in all, these common threads are to my mind among the most important elements of the three series:
  1. Science and the humanities rely on the same basic processes of the human brain and so are not all that different;
  2. Scientific thinking can be as creative an endeavour as the arts;
  3. Scientists don't live in a cultural vacuum but are part and parcel of their world and time;
  4. Religion is the most change-resistant of human activities and therefore rarely appears sympathetic to science's aims and goals.

As Carl Sagan put it, "we make our world significant by the courage of our questions and the depth of our answers." For me, these three series are significant for their appraisal of some of those courageous explorers who have given us the knowledge and tools we call science.


Tuesday, 28 October 2014

Sandy strandings: the role of contingency in the beach biosphere

At irregular intervals over the past fifteen years I've been visiting the east coast beaches of New Zealand's Northland between Warkworth and Paihia. Although it's frequently good territory for finding shallow marine fauna via rock pools or along the tideline, a recent visit was enhanced by exciting finds unique in my experience. I usually expect to see the desiccated remains of common species such as sand dollars, scallops, whelks and assorted sea snails, but coastal storms just prior to my arrival brought an added bonus. Two days of exploration along three beaches was rewarded with a plethora of live - but presumably disorientated - creatures such as common sea urchins (Evechinus chloroticus) and large hermit crabs (Pagurus novizealandiae), along with some recently-deceased 5- and 7-arm starfish. As you might imagine, several species of seabird, notably terns and gulls, were having a gastronomic time of it with all these easy pickings.

At the nearby Goat Island Marine Discovery Centre run by the University of Auckland I told our marine biologist guide about my two daughters' attempts to save some of the homeless hermit crabs from the gulls by offering suitable shells as new abodes. The biologist responded with a story of a visitor who had thrown live starfish back into the water after a mass stranding. Someone else commented that his actions wouldn't make a difference; our guide said that as he continued throwing them, the man replied "It made a difference to that one...and that one...and that one..."

Sea urchin

Common sea urchin (Evechinus chloroticus)

Of course we cannot hope to make much of a difference with such good intentions: nature, after all, is essentially immune to human morality and empathy, with survival at a genetic level the only true sign of success. But do small-scale events whose aftermath I recently experienced - in this case a few days of stormy weather and the resultant strandings - have any long-term effects on the local ecosystem?

Apart from a mass marooning of the large barrel jellyfish Rhizostoma pulmo on a North Wales beach around thirty years ago, I haven't experienced anything similar before. But then until three years ago I didn't live near the sea, so perhaps that's not unlikely! There are fairly frequent news stories from around the world about mass whale or dolphin beachings put down to various causes, some man-made such as military sonar. But as these events involve animals larger than humans they make it onto the news: for smaller creatures such as the crabs and urchins mentioned above, there are unlikely to be any widely-disseminated stories.

7 arm starfish

Australian southern sand star (Luidia australiae)

It may seem improbable that the balance between organisms could be profoundly altered by local events, but it should be remembered that a few, minor, outside influences over the course of less than a century can wipe out entire species. For example, although the story of how a single cat was responsible for the demise of the Stephens Island wren around the start of the Twentieth Century is an oversimplification of the events, there is evidence that current human activity is inadvertently causing regional change.

One well-known recent illustration is from the Sea of Cortez, where too much game fishing, especially of sharks, may have led to the proliferation a new top predator, the rapidly spreading Humboldt squid. Estimates suggest that the current population in the region is over 20 million individuals (which suits the local squid-fishing industry just fine), but extraordinary considering none were known in the region before about 1950. Two-metre squid may not sound menacing compared to sharks, but the Humboldt squid is a highly-intelligent pack hunter with a razor-sharp beak and toothed suckers on its tentacles, so diving amongst them is probably not for the faint-hearted.

The TV series Cosmos: A Spacetime Odyssey contained a good introduction to the five mass extinctions of the past 450 million years, but it isn't just these great dyings or even El Niño that can upset ecosystems; we may find out too late that relatively minor, local changes are able to trigger a chain reaction at a far wider level. The evolutionary biologist Stephen Jay Gould repeatedly emphasised the importance of historical contingency and the impact of unpredictable, ad-hoc events on natural history. The modern synthesis of evolutionary biology includes the notion that speciation can result from isolation of a population within an 'island'. This latter differs from the strictly geographical definition: a lake, or even an area within a lake, can be an island for some species. If, for example, local changes cause a gap in the ecosystem, then this gap might be filled by an isolated population with the 'fittest' characteristics, in the sense of a jigsaw piece that fits the relevant-shaped hole.

Hermit crab

Hermit crab (Pagurus novizealandiae)

Back to the beach. American marine biologist Rachel Carson's 1951 award-winning classic The Sea Around Us contains an early discussion of the recycling of nutrients within the oceans, but we are now aware that the sea isn't remotely self-contained. My favourite example of an intricate web of land, sea and even aerial fauna and flora centres on the Palmyra Atoll in the Pacific Northern Line Islands. Various seabirds nest in the atoll's high trees, their nutrient-rich guano washing into the sea where it feeds plankton at the base of the offshore food chain. The plankton population feeds larger marine fauna, with certain fish and squid species in turn providing meals for the seabirds, thus completing the cycle. Such a tightly-knit sequence is likely to undergo major restructuring of population densities if just one of the players suffers a setback.

I appear to have followed Stephen Jay Gould's method of moving from the particular to the general and may be a little out of my depth (okay, call it a feeble attempt at a pun) but it certainly gives food for thought when local shallow marine populations appear to suffer after only a few days of mildly inclement weather. If there’s a moral to any of this, it’s that if natural events can affect an ecosystem in unpredictable ways, what havoc could we be causing, with our pesticide run-off, draining of water tables, high-energy sonar, over-fishing and general usage of the oceans as a rubbish dump? The details may require sophisticated mathematics, but the argument is plain for all to see.

Saturday, 16 August 2014

The escalating armoury: weapons in the war between science and woolly thinking

According to that admittedly dubious font of broad knowledge Wikipedia, there are currently sixteen Creationist museums in the United States alone. These aren't minor attractions for a limited audience of fundamentalist devotees either: one such institution in Kentucky has received over one million visitors in its first five years. That's hardly small potatoes! So how much is the admittance fee and when can I go?

Or maybe not. It isn't the just the USA that has become home to such anti-scientific nonsense either: the formerly robust secular societies of the UK and Australia now house museums and wildlife parks with similar anti-scientific philosophies. For example, Noah's Ark Zoo Farm in England espouses a form of Creationism in which the Earth is believed to be a mere 100,000 years old. And of course in addition to traditional theology, there is plenty of pseudo-scientific/New Age nonsense that fails every test science can offer and yet appears to be growing in popularity. Anyone for Kabbalah?

It's thirty-five years since Carl Sagan's book Broca's Brain: Reflections on the Romance of Science summarised the scientific response to the pseudo-scientific writings of Immanuel Velikovsky. Although Velikovsky and his bizarre approach to orbital mechanics - created in order to provide an astrophysical cause for Biblical events - has largely been forgotten, his ideas were popular enough in their time. A similar argument could be made for the selective evidence technique of Erich von Daniken in the 1970's, whose works have sold an astonishing 60 million copies; and to a less extent the similar approach of Graham Hancock in the 1990's. But a brief look at that powerhouse of publishing distribution, Amazon.com, shows that today there is an enormous market for best-selling gibberish that far outstrips the lifetime capacity of a few top-ranking pseudo-scientists:
  • New Age: 360,000
  • Spirituality: 243,000
  • Religion: 1,100,000
  • (Science 3,100,000)
(In the best tradition of statistics, all figures have been rounded slightly up or down.)

Since there hasn't exactly been a decrease of evidence for most scientific theories, the appeal of the genre must be due to changes in society. After writing-off the fundamentalist/indoctrinated as an impossible-to-change minority, what has lead to the upsurge in popularity of so many publications at odds with critical thinking?

It seems that those who misinterpret scientific methodology, or are in dispute with it due to a religious conviction, have become adept at using the techniques that genuine science popularisation utilises. What used to be restricted to the printed word has been expanded to include websites, TV channels, museums and zoos that parody the findings of science without the required rigorous approach to the material. Aided and abetted by well-meaning but fundamentally flawed popular science treatments such as Bill Bryson's A Short History of Nearly Everything, which looks at facts without real consideration of the science behind them, the public are often left with little understanding of what separates science from its shadowy counterparts. Therefore the impression of valid scientific content that some contemporary religious and pseudo-science writers offer can quite easily be mistaken for the genuine article. Once the appetite for a dodgy theory has been whetted, it seems there are plenty of publishers willing to further the interest.

If a picture is worth a thousand words, then the 'evidence' put forward in support of popular phenomenon such an ancient alien presence or faked moon landings seems all the more impressive. At a time when computer-generated Hollywood blockbusters can even be replicated on a smaller scale in the home, most people are surely aware of how easy it is to be fooled by visual evidence. But it seems that pictorial support for a strongly-written idea can resonate with the search for fundamental meaning in an ever more impersonal technocratic society. And of course if you are flooded with up-to-the-minute information from a dozen sources then it is much easier to absorb evidence from your senses than having to unravel the details from that most passé of communication methods, boring old text. Which perhaps fails to explain just why there are quite so many dodgy theories available in print!

But are scientists learning from their antithesis how to fight back? With the exception of Richard Dawkins and other super-strict rationalists, science communicators have started to take on board the necessity of appealing to hearts as well as minds. Despite the oft-mentioned traditional differentiation to the humanities, science is a human construct and so may never be purely objective. Therefore why should religion and the feel-good enterprises beloved of pseudo-scientists hold the monopoly on awe and wonder?

Carl Sagan appears to have been a pioneer in the field of utilising language that is more usually the domain of religion. In The Demon-Haunted Word: Science As A Candle In The Dark, he argues that science is 'a profound source of spirituality'. Indeed, his novel Contact defines the numinous outside of conventional religiosity as 'that which inspires awe'. If that sounds woolly thinking, I'd recommend viewing the clear night sky away from city lights...

Physicist Freeman Dyson's introduction to the year 2000 edition of Sagan's Cosmic Connection uses the word 'gospel' and the phrase 'not want to appear to be preaching'. Likewise, Ann Druyan's essay A New Sense of the Sacred in the same volume includes material to warm the humanist heart. Of course, one of the key intentions of the Neil deGrasse Tyson-presented reboot of Cosmos likewise seeks to touch the emotions as well as improve the mind, a task at which it sometimes - in my humble opinion - overreaches.

The emergence of international science celebrities such as Tyson is also helping to spread the intentions if not always the details of science as a discipline. For the first time since Apollo, former astronauts such as Canadian Chris Hadfield undertake international public tours. Neil deGrasse Tyson, Michio Kaku and Brian Cox are amongst those practicing scientists who host their own regular radio programmes, usually far superior to the majority of popular television science shows. Even the seven Oscar-winning movie Gravity may have helped promote science, with its at times accurate portrayal of the hostile environment outside our atmosphere, far removed from the science fantasy of most Hollywood productions. What was equally interesting was that deGrasse Tyson's fault-finding tweets of the film received a good deal of public attention. Can this suppose that despite the immense numbers of anti-scientific publications on offer, the public is prepared to put trust in scientists again? After all, paraphrasing Monty Python, what have scientists ever done for us?

There are far important uses for the time and effort that goes into such nonsense as the 419,000 results on Google discussing 'moon landing hoax'. And there's worse: a search for 'flat earth' generates 15,800,00 results. Not that most of these are advocates, but surely very few would miss most of the material discussing these ideas ad nauseum?

Although it should be remembered that scientific knowledge can be progressed by unorthodox thought - from Einstein considering travelling alongside a beam of light to Wegener's continental drift hypothesis that led to plate tectonics - but there is usually a fairly obvious line between an idea that may eventually be substantiated and one that can either be disproved by evidence or via submission to parsimony. Dare we hope that science faculties might teach their students techniques for combating an opposition that doesn't fight fair, or possibly even how to use their own methods back at them? After all, it's time to proselytise!

Wednesday, 18 June 2014

Opening hearts and minds: Cosmos old, new, borrowed and blue

As a young and impressionable teenager I recall staying up once a week after the adults in my home had gone to bed in order to watch an amazing piece of television: Cosmos, a magical journey in thirteen episodes that resonated deeply with my own personal hopes and dreams. Now that Cosmos: A Spacetime Odyssey has completed its first run it's worth comparing and contrasting the two series, serving as they do as reflections of the society and culture that created them.

Both versions were launched with aggressive marketing campaigns: I was surprised to see even here in Auckland a giant billboard promoted the series in as hyped a media operation as any Hollywood blockbuster. But then I assume the broadcasters have to get returns for their massive investments (dare I call it a leap of faith?) Both the original series and the updated / reimagined / homage (delete as appropriate) version have greater scope, locales and no doubt budgets than most science documentary series, a few CGI dinosaur and David Attenborough-narrated natural history shows excepted.

The aim of the two series is clearly identical and can be summed up via a phrase from Carl Sagan's introduction to the first version's tie-in book: "to engage hearts as well as minds". In addition, both the 1980 and 2014 versions are dedicated to the proposition that "the public are far more intelligent than generally given credit for". However, with the rise of religious fundamentalist opposition to science in general and evolution in particular, there were times when the new version obviously played it safer than the earlier series, such as swapping Japanese crabs for much more familiar species, dogs. As before, artificial selection was used as a lead-in to natural selection, exactly as per Darwin's On the Origin of Species.

Another example to put the unconverted at their ease in the Neil deGrasse Tyson series is the use of devices that rely on the enormous popularity of science fiction movies and television shows today. Even the title sequence provokes some déjà vu, reminding me of Star Trek: Voyager. But then one of the directors and executive producers is former Star Trek writer-producer Brannon Braga, so perhaps that's only to be expected. In addition, the temple-like interior of Sagan's ship of the imagination has been replaced by something far more reminiscent of the Enterprise bridge. I suppose the intention is to put the scientifically illiterate at their ease before broaching unfamiliar territory.

Talking of science fiction, an echo of the space 'ballet' in 2001: A Space Odyssey can be seen with the use of Ravel's Bolero for the beautiful sequence in episode 11 of the new series. Unfortunately, the commissioned music in the Tyson programme fails to live up to the brilliant selections of classical, contemporary and folk music used in the Sagan version, which were presumably inspired by the creation of the Voyager Golden Record (a truly 1970's project if ever there was one) and with which it shares some of the same material. At times Alan Silvestri's 2014 score is too reminiscent of his Contact soundtrack, which wouldn't in itself be too distracting, but at its most choral/orchestral is too lush and distinctly overblown. Having said that, the synthesizer cues are more successful, if a bit too similar to some of the specially written material Vangelis composed for the 1986 revised version.

I also had mixed feelings about the animated sequences, the graphic novel approach for the characters seemingly at odds with the far more realistic backgrounds. Chosen primarily for budgetary reasons over live-action sequences, the combination of overstated music, dramatic lighting and quirks-and-all characterisation heavy on the funny voices meant that the stories tended to get a bit lost in the schmaltz-fest. I know we are far more blasé about special effects now - the Alexandrian library sequence in the original series blew me away at the time - but I'd rather have real actors green-screened onto digimattes than all this pseudo Dark Knight imagery.

Back to the content, hurrah! For readers of the (distinctly unpleasant) Keay Davidson biography, Carl Sagan, champion of Hypatia, has become known as the feminist ally who never did any housework. He has been left distinctly in the shade by the much greater attention paid to women scientists in the new series. Presumably Ann Druyan is responsible for much of this, although there are some lost opportunities: Caroline Herschel, most obviously; and Rachel Carson wouldn't have gone amiss, considering how much attention was given to climate change. As with the original series, the new version made a fair stab at non-Western contributions to science, including Ibn al-Haytham and Mo Tzu in the new series.

As to what could have been included in the Tyson version, it would have been good to emphasise the ups and downs trial-and-error nature of scientific discovery. After all, Sagan gave a fair amount of time to astronomer, astrologer and mystic Johannes Kepler, including his failed hypothesis linking planetary orbits to the five Platonic solids. Showing such failings is good for several reasons: it makes scientists seem as human as everyone else and also helps define the scientific method, not just the results. Note: if anyone mentions that Kepler was too mystical when compared to the likes of Galileo, point them to any modern biography of Isaac Newton...

Neil deGrasse Tyson is an excellent successor to Sagan but at times he seems to almost be imploring the audience to understand. But whereas Sagan only contended with good old fashioned astrology, his successor faces an audience of young Earth creationists, alien abductees, homeopaths and moon landing hoax theorists, so perhaps his less relaxed attitude is only to be expected. Despite the circa 1800 exoplanets that have now (indirectly) been detected, the new series failed to mention this crucial update to the Drake equation. Indeed, SETI played a distinctly backseat role to the messages of climate degradation and how large corporations have denied scientific evidence if it is at odds with profit margins.

All in all I have mixed feelings about the new series. For a central subject, the astronomy was at times second fiddle to the 'poor boy fighting adversity' theme of Faraday, Fraunhofer, etal. Not that there's anything bad about the material per se, but I think a lot more could have been made of the exciting discoveries of the intervening years: dark matter and dark energy, geological activity on various moons other than Io, even exoplanets.

The original 1980 series was a pivotal moment of my childhood and no doubt inspired countless numbers to become scientists (British physicist and presenter Brian Cox, for one), or at least like me, to dabble amateurishly in the great enterprise in our spare time. I'm pleased to add that I'm one degree of separation from Carl Sagan, thanks to having worked with a cameraman from the original series. But we can never go back. Perhaps if we're lucky, Tyson, Druyan and company will team up for some other inspiring projects in the future. Goodness knows we could do with them!

Monday, 30 November 2009

Horizon Event: science broadcasting in the UK today

The BBC has borne the brunt of accusations in recent years regarding the dumming down of science broadcasting, but their 17th November Horizon episode 'How Long is a Piece of String?' shows that there is still hope. For a start, it lacked two of my pet hates that are seemingly mandatory in current documentaries: blurry hand-held shots joined by jump cuts and accompanied by a pop track that changes every five seconds; and slick computer graphics sequences repeated up to half a dozen times just to get the money's worth. MTV: you have a lot to answer for!

The rather silly Press moniker 'Everymoron' belies the fact that the show's presenter Alan Davies is ideal for the role, perfectly balancing a genuine desire to learn with the difficulty of understanding abstractions far removed from the every day. What starts with the appearance of a simple mechanical problem ends up with Alan delving into all sorts areas, from fractals to quantum electrodynamics. Davies' earlier Maths-orientated Horizon, 'Go Forth and Multiply', was great for those like me who didn't even get as far as calculus; this episode was an even better combination of exposition and entertainment.

Horizon has broadcast over one thousand episodes since 1964 but with its website no longer being updated and some fairly dubious programmes in the past decade verging on New Age quackery, it could appear there has been a major loss of nerve. Horizon's Channel Four equivalent, Equinox, made some excellent programmes over fifteen years before fizzling out of a regular slot in 2001. Surely it's inconceivable that the audience for these programmes has evaporated? Channel Four still makes a few interesting short series - Inside Nature's Giants springs to mind - but no annual shows. Most of the specialist satellite and cable channels just recycle the old favourites, and as for Channel Five...

One obvious problem is simple economics: documentaries aren't usually big money spinners compared to the reality rubbish that clogs our airtime, meaning international co-productions are a safer bet. And if the co-producer is American, there are obvious issues for any biology-related stories: "We've got to be careful now - we can't afford to lose all those channels in the Bible Belt!" But is this a side issue? Are we simply seeing a frightening reflection of a society that has lost confidence in science and is turning to spiritual beliefs old and new?

I really miss the large-scale one-off series (with accompanying book), such as the classics The Ascent of Man, Cosmos and The Day the Universe Changed. These were fantastic ventures, introducing science-orientated themes to large audiences. It seems that only David Attenborough can still command these sorts of budgets, although it would be difficult not to fund him considering how profoundly inspiring he is (I confess that several decades ago I met the great man and would certainly make an exception to the rule 'never meet your heroes').

But natural history is only one segment of the great sweep of science. Horizon has shown a predilection for what could be dubbed the historical/contingency sciences in the increasing frequency of its palaeontological and archaeological episodes, no doubt deemed safe bets considering the popularity of Time Team and all-things dinosaur. Of course archaeology is a humanity that makes use of scientific techniques, so for anyone tedious enough to follow Ernest Rutherford's view that all science is either physics or stamp collecting, this emphasis won't impress.

Talking of dinosauria, the BBC has gained enormous success with producer Tim Haines, from Walking With Dinosaurs and its sequels to Space Odyssey, but these are on the order of 'docufiction' and not a substitute for Horizon or Equinox at their best. The boundaries between evidence and speculation in Haines' series, although tempered by the companion books and 'making of' documentaries, are frequently blurred to such an extent as to give the impression much of the content is unimpeachable fact. I don't want to be a killjoy: the series are excellent fun, but they are not science documentaries.

On the other hand, shows based around practical experiments are on the increase, with even food programmes getting in on the act. Let's hope the likes of the BBC's Bang Goes The Theory and its companion website don't degenerate into the sort of lowbrow edutainment that defined the latter years of Tomorrow's World (you might be able to guess why I’m deliberately ignoring the likes of Click and Channel Five's The Gadget Show.)

Also, it's hard to dispute the excellence of science broadcasting on BBC Radio Four, with Leading Edge, Frontiers and Material World just a few of many regular series. Mention should also be made of Melvin Bragg's multi-disciplined In Our Time; it has some superb science episodes, supplying additional entertainment whenever he is called upon to pronounce 'spectroscopy'!

Where does QI fit in to all this? Stephen Fry tries hard despite the obvious gaps in his scientific knowledge, my favourite clanger being his 2005 remark that marsupials aren't mammals - eek! Having everyone's favourite quantum physicist-turned-comedian Ben Miller crop up now and then is a good idea, but if Alan Davies can keep up the good work on Horizon, perhaps we're in for some real treats. Here's to the 'Everymoron'!