Showing posts with label Thomas Malthus. Show all posts
Showing posts with label Thomas Malthus. Show all posts

Monday, 15 March 2021

Distorted Darwin: common misconceptions about evolution and natural selection

A few months' ago, I discussed how disagreements with religious texts can lead the devout to disagree with key scientific theories; presumably this is a case of fundamentalists denying the fundamentals? Of all the areas of scientific research that cause issues today, it is evolutionary biology that generates the most opposition. This is interesting in so many ways, not least because the primary texts of the Abrahamic religions have little to say on the topic beyond the almost universal elements seen in creation myths, namely that one or more superior beings created all life on Earth and that He/They placed humanity at the zenith.

Thanks to opposition to the modern evolutionary synthesis, there is a plethora of misinformation, from material taken out of context to complete falsehoods, that is used to promote Creationist ideas rather than scientifically-gleaned knowledge. Even those with well-meaning intentions often make mistakes when condensing the complexity of the origin and history of life into easy-to-digest material. I've previously written about the concepts of evolutionary bushes rather than ladders, concurrent rather than consecutive radiation of sister species and speciation via punctuated equilibrium (i.e., the uneven pace of evolution) so here are a few other examples where the origin, implications and illustrations of natural selection has been distorted or overly simplified to the point of inaccuracy.

I've previously mentioned that Charles Darwin was the earliest discoverer - but only a decade or two ahead of Alfred Russel Wallace - of natural selection, and not as is often written, evolution per se. However, this is not completely accurate. Darwin's hypothesis was more complete than Wallace's, in the sense of being entirely scientific and therefore testable. Wallace on the other hand maintained there must have been divine intervention in the creation of our species, making us different from all other life forms.

In addition, there were several precursors who partially formulated ideas regarding natural selection, but who were unable to promote a consistent, evidence-based hypothesis to anywhere near the extent that Darwin achieved. For example, as early as 1831 the Scottish agriculturalist Patrick Matthew published some notes on what he termed 'new diverging ramifications of life' as he thought must occur after mass extinctions. Nevertheless, he failed to expand and fully explain his ideas, seemingly unaware of where they could lead. In this sense, he is a minor figure compared to the thorough research Darwin undertook to back up his hypothesis. 

Darwin appears to have been unaware of Matthew's ideas, although the same could not be said for Robert Chambers' (anonymous) 1844 publication Vestiges of the Natural History of Creation, which although highly speculative contained some kernels of truth about the mechanisms behind biological evolution. Just as Thomas Malthus' 1798 An Essay on the Principle of Population inspired Darwin, so the mid-nineteenth century contained other combinations of ideas and real-world inspiration that provided,an ideal background for the formulation of natural selection. In other words, the conditions were ready for those with the correct mindset to uncover the mechanism behind evolution. What Darwin did was to combine the inspiration with an immense amount of rigour, including examples taken from selective breeding.

Another frequently quoted fallacy is that evolution always maintains a single direction from earlier, simpler organisms to later, more complex ones. I've covered this before in discussions of the evolution of our own species, as many popular biology accounts seek parallels between technological progress and a central branch of animal evolution leading ever upwards until it produced us. 

Modern techniques such as genetic analysis and sophisticated examination of fossils - including scanning their internal cavities – has negated this appealing but incorrect idea. For example, mammals evolved around the same time as the dinosaurs (and over one hundred million years before flowering plants) while parasitic species often have a far more rudimentary structure than their ancestors. 

Despite this, we still see countless illustrations showing a clear-cut path from primordial organisms 'up' to Homo sapiens. No-one who has seen the cranial endocast of a dinosaur would consider it to be superior to even the least intelligent of mammals, although the later medium-sized carnivorous species were on the way to developing a bird-like brain-to-body mass ratio. Yet throughout the Jurassic and Cretaceous periods, dinosaurs filled most ecological niches at the expense of the mammals; you would be hard-pressed to state that the latter were the dominant type of land organism during the Mesozoic!

Research published last year shows that New Zealand's unique tuatara, the sole remaining member of the Rhynchocephalia, is a reptile that shares some genetic similarities to the Monotremata, the egg-laying mammalian species known as platypus and echidna. In addition, a report from the beginning of this year states that the ancestors of today's five monotreme species diverged from all other mammals 187 million years ago; therefore, they have spent approximately three times as long on their own evolutionary journey as they did when part of all the other mammalian lineages. As a result of retaining many ancestral features, the platypus genome is in some ways more like that of birds and reptiles rather than placental and marsupial mammals. But we still include them amongst the mammals rather than as a hybrid or separate class; both platypus and echidna have fur, are warm-blooded and produce milk (although with a unique delivery system!) This allows their inclusion in Mammalia; does this mean we arbitrarily allow certain traits and discard others?

Would it be fair to say that the boundaries we make between organisms are more for our convenience than the underlying reality? Are you happy to label birds as 'avian dinosaurs' and if not, why not? If they had feathers, nests and even underground burrows, some dinosaurs were clearly part of the way there; physiologically, it was teeth, bony tail, and a crocodilian-type brain that provided the differentiation from birds. Scans of fossils show that dinosaur hearts may have been more like birds than other reptiles, which along with the possible discovery of bird-like air sacs, means that they could have had something of the former's more active lifestyle. 

This doesn't confirm that they were warm-blooded: today there are eight species, including leatherback turtles, that are mesothermic and therefore lie between warm- and cold-blooded metabolisms. Eggshell analysis suggests that some of the theropod (carnivorous) dinosaurs could have been warm-blooded, but as dinosaurs existed for around 165 million years it may be that some evolved to be mesothermic and others to be endothermic (i.e., fully warm-blooded). In this respect then, some meat-eating dinosaurs especially may have had more in common with us mammals than they did with other reptiles such as lizards and snakes.

All this only goes to show that there is far more to life's rich pageant than the just-so stories still used to illustrate the history of life. Science communication to the public is fundamental to our society but it needs to present the awkward complexities of evolution via all the tortured pathways of natural selection if it is not to fall victim to those who prefer myths of the last few thousand years to the history of countless millennia, as revealed in the genes and rocks waiting for us to explore.


Monday, 20 March 2017

Tsunamis and sunsets: how natural disasters can inspire creativity

Just as war is seen as a boost to developments in military technology, so major disasters can lead to fruitful outbursts in creativity. The word disaster, literally meaning 'bad star' in Ancient Greek, might seem more appropriate to meterorite impacts or portents associated with comets, but there are plenty of terrestrial events worthy of the name. One interesting geophysical example appears to have had an obvious effect on Western art and literature: the eruption of Mount Tambora in April 1815.

This Indonesian volcano exploded with such force that ash fell in a cloud over 2,500 km in diameter, with the initial flows and tsunami causing over 10,000 deaths. The subsequent death toll may have been ten times that number, primarily due to starvation and disease. The short-term changes in climate are thought to have accelerated the spread of a cholera strain, leading eventually to millions of deaths during the next few decades.

Although volcanic aerosols lasted for some months after the eruption, the effects were still being felt the following year. Indeed, 1816 earned such delightful nicknames as 'The Year Without a Summer' and 'Eighteen Hundred and Froze to Death', with global temperatures dropping just over half a degree Celsius. This might not sound like much, but as an example of the freak conditions the northern USA received snow in June. Thanks to the recording of weather data at the time, it seems that the climate didn't return to normal for that period until 1819.

The terrible weather and its resulting famines and spread of disease led to riots in many nations, with the short-term appearance of vivid sunsets - due to the fine volcanic dust - failing to make up for the deprivations of food shortages and very cold conditions. One artist who was probably inspired by the former effect was J.M.W. Turner, whose paintings of evening skies appear extremely garish. As a child, I thought this seemingly unnatural colouration was due to artifice, not realising that Turner was depicting reality.

The post-Tambora aerosols contributed to Turner's stylistic change towards depicting the atmospheric effects of light at the expense of form. His radiant skies and translucent ambience inspired the Impressionist school of painting, so perhaps modern art can be said to have its roots in this two hundred year-old disaster.

Literature also owes a debt to Tambora's aftermath: during their famous Swiss holiday in June 1816, Lord Byron produced the outline of the first modern vampire story whilst Mary Shelley started writing Frankenstein. It's easy to suggest that the food riots and wintry weather then current in Switzerland could have contributed towards her tale, in which mankind's best efforts to control nature are doomed to failure.

However, it isn't just the arts that were affected by the aftermath of the volcanic eruption: several key technologies had their roots in the widespread food shortages generated by Tambora. In 1817 the German inventor Karl Drais, aware of the lack of fodder then available to feed horses, developed the earliest steerable - if pedal-less - bicycle. Although its use was short-lived, the velocipede or hobby horse was the first link in the chain (go on, spot the pun) that led to the modern bicycle.

If that doesn't appear too convincing, then the work of another German, the chemist Justus von Liebig, might do. Having as a child been a victim of the post-Tambora famine, von Liebig is known as the 'father of the fertiliser industry' for his work in the 1840s to increase crop yields via nitrogen-based fertilisers.

There is still a widespread perception that scientists' thought processes differ from the rest of humanity's, utilising thought methods that lack any emotion. However, the after effects of Tambora imply that creativity in response to surroundings can be just as important for scientific advance, in the same way that artists respond to their immediate environment. Hopefully, recognition of this will be another nail in the coffin for the harmful idea of C.P. Snow's 'Two Cultures' and lead more people to respect the values of science, upon which our civilisation so heavily relies. Perhaps that way we'll be rather better prepared for the next great natural disaster; after all, it's only a question of time...


Sunday, 26 February 2017

Wondering about the wanderer: the life and times of the monarch butterfly in New Zealand

This summer has seen a proliferation of monarch butterflies in my garden. Over the past five years there's been little change in planting - except for a few additional self-seeded swan plants (a.k.a. milk weed Gomphocarpus fruticosus and similar species) - so why am I now seeing so many more Kahuku/Wanderer than previous years? This summer has seen a mixture of wet and dry weeks but not an extreme in either direction, when compared to the previous four summers in house. Is that the secret: just a balance of weather conditions; or is there more to it than that? As I pointed out in a recent post, a cluster of swan plants several street's away has seen very few monarch butterflies. Let's have a look at the details.

Monarch caterpillar

My experience:

Although common enough in all except the coldest regions of New Zealand, Danaus plexippus is not a native species but seemingly self-introduced at some point within the last 150 years. It's large size and colourful wing markings have led to its popularity in art and science. I've seen paintings, collages, sculptures and jewellery utilising its patterns, which contrast vividly with New Zealand's predominantly green appearance.

Swan plants, the almost sole food source, are readily available from garden centres and buying one can lead to large numbers of self-seeded plants, aiding the spread of the monarch. I've found this year that even young plants under 50cm tall have had eggs laid on them. I've also noticed that the swan plants in my back garden contain more than double the number of caterpillars than those in the front garden, despite the latter garden being much larger and having a lot more vegetation. I've even noticed that some caterpillars in the front garden disappear shortly after starting to pupate; perhaps the denser planting attracts or hides more predators?

Monarch chrysalis

Lifecycle:

The eggs are usually found on the underside of leaves and tend to be more conspicuous than the first instar (freshly-hatched) caterpillars. Apparently, larger caterpillars will munch through both eggs and smaller caterpillars without noticing, so it's a monarch-eat-monarch world out there! I've had to move some caterpillars when they get to a decent size in order to prevent them eating their entire plant and starving to death. Females can lay hundreds of eggs in their lifetime at a rate of up to 40 per day, so monarch care sites recommend destroying later eggs to allow the earlier individuals to survive. In general, the warmer the weather the quicker the caterpillars grown to full size before pupating. However, it has been noted that butterflies that hatch in the autumn can survive over winter, often in colonies, their lifespan extended from two months for same-summer breeders up to nine months. Unlike in their North American homeland, New Zealand monarchs do not migrate enormous distances.

Monarch chrysalis about to hatch

Predation:

Despite absorbing toxins from milkweed, both caterpillars and butterflies are predated by a range of other animals. I've occasionally found a pair of wings on the ground, which is a good indication of predation by a South African praying mantis, Miomantis caffra. Other introduced invertebrates such as wasps will also attack monarchs. It's interesting that these predators tend to have originated in Europe, Africa and Asia yet the monarch evolved in North America; clearly, the former aren't too specialised to be able to handle alien prey. Which of course is what has happened in general to New Zealand's native birds and reptiles, with European mustelids and rodents and Australian possums finding a veritable feast amongst the kiwi and company.

Caring for monarchs:

Apart from removing caterpillars from overcrowded plants, my only other assistance is to rehang any fallen chrysalis and move the occasional pre-pupating wanderer into a wood and wire cage until they metamorphose. Although I have found one chrysalis about eight metres from the closest swan plant, a fully-grown wandering caterpillar might just prove too tempting a morsel. Otherwise I tend to leave nature to do its thing; after all, it's hardly an endangered species. Many caterpillars disappear before reaching pupation due to a combination of disease and predation and any swan plant that gets completely eaten may lead the incumbent caterpillars to starvation. Darwin was famously inspired by Thomas Malthus' An Essay on the Principle of Population, so it's great to be able to see such a theory in action in your own garden!

Monarch butterfly

Public interest:

Despite being neither native nor endangered, there are various New Zealand-based citizen science projects studying them, such as by fitting wing tags for tracking purposes. Much as I am in favour of direct public engagement in science, I wonder if the effort wouldn't be better redirected towards endangered native species. As I've previously discussed, if visually attractive poster species get much of the attention, where does that leave the smaller, more drab, less conspicuous critters that may be more important?

I'm still at a loss to what has caused this summer's proliferation of monarch butterflies in my garden. There are just as many other summer species as usual, such as adult cicada and black crickets, and seemingly as many monarch predators such as praying mantises. But as I've mentioned before, perhaps what to human eyes appear similar conditions are not so to these colourful creatures. Although how much effort would be required to detail those conditions is somewhat beyond the capability of this amateur entomologist!