Showing posts with label melanosomes. Show all posts
Showing posts with label melanosomes. Show all posts

Monday 27 August 2018

Hammer and chisel: the top ten reasons why fossil hunting is so important

At a time when the constantly evolving world of consumer digital technology seems to echo the mega-budget, cutting-edge experiments of the LHC and LIGO, is there still room for such an old-fashioned, low-tech science as paleontology?

The answer is of course yes, and while non-experts might see little difference between its practice today and that of its Eighteenth and Nineteenth Century pioneers, contemporary paleontology does on occasion utilise MRI scanners among other sophisticated equipment. I've previously discussed the delights of fossil hunting as an easy way to involve children in science, yet the apparent simplicity of its core techniques mask the key role that paleontology still plays in evolutionary biology.

Since the days of Watson and Crick molecular biology has progressed in leaps and bounds, yet the contemporary proliferation of cheap DNA-testing kits and television shows devoted to gene-derived genealogy obscure just how tentatively some of their results should be accepted. The levels of accuracy quoted in non-specialist media is often far greater than what can actually be attained. For example, the data on British populations has so far failed to separate those with Danish Viking ancestry from descendants of earlier Anglo-Saxon immigration, leading to population estimates at odds with the archaeological evidence.


Here then is a list of ten reasons why fossil hunting will always be a relevant branch of science, able to supply information that cannot be supplied by other scientific disciplines:
  1. Locations. Although genetic evidence can show the broad sweeps connecting extant (and occasionally, recently-extinct) species, the details of where animals, plants or fungi evolved, migrated to - and when - relies on fossil evidence.
  2. Absolute dating. While gene analysis can be used to obtain the dates of a last common ancestor shared by contemporary species, the results are provisional at best for when certain key groups or features evolved. Thanks to radiometric dating from some fossiliferous locales, paleontologists are able to fill in the gaps in fossil-filled strata that don't have radioactive mineralogy.
  3. Initial versus canonical. Today we think of land-living tetrapods (i.e. amphibians, reptiles, mammals and birds) as having a maximum of five digits per limb. Although these are reduced in many species – as per horse's hooves – five is considered canonical. However, fossil evidence shows that early terrestrial vertebrates had up to eight digits on some or all of their limbs. We know genetic mutation adds extra digits, but this doesn't help reconstruct the polydactyly of ancestral species; only fossils provide confirmation.
  4. Extinct life. Without finding their fossils, we wouldn't know of even such long-lasting and multifarious groups as the dinosaurs: how could we guess about the existence of a parasaurolophus from looking at its closest extant cousins, such as penguins, pelicans or parrots? There are also many broken branches in the tree of life, with such large-scale dead-ends as the pre-Cambrian Ediacaran biota. These lost lifeforms teach us something about the nature of evolution yet leave no genetic evidence.
  5. Individual history. Genomes show the cellular state of an organism, but thanks to fossilised tooth wear, body wounds and stomach contents (including gastroliths) we have important insights into day-to-day events in the life of ancient animals. This has led to fairly detailed biographies of some creatures, prominent examples being Sue the T-Rex and Al the Allosaurus, their remains being comprehensive enough to identify various pathologies.
  6. Paleoecology. Coprolites (fossilised faeces), along with the casts of burrows, help build a detailed enviromental picture that zoology and molecular biology cannot provide. Sometimes the best source of vegetation data comes from coprolites containing plant matter, due to the differing circumstances of decomposition and mineralisation.
  7. External appearance. Thanks to likes of scanning electron microscopes, fossils of naturally mummified organisms or mineralised skin can offer details that are unlikely to be discovered by any other method. A good example that has emerged in the past two decades is the colour of feathered dinosaurs obtained from the shape of their melanosomes.
  8. Climate analysis. Geological investigation can provide ancient climate data but fossil evidence, such as the giant insects of the Carboniferous period, confirm the hypothesis. After all, dragonflies with seventy centimetre wingspans couldn't survive with today's level of atmospheric oxygen.
  9. Stratigraphy. Paleontology can help geologists trying to sequence an isolated section of folded stratigraphy that doesn't have radioactive mineralogy. By assessing the relative order of known fossil species, the laying down of the strata can be placed in the correct sequence.
  10. Evidence of evolution. Unlike the theories and complex equipment used in molecular biology, anyone without expert knowledge can visit fossils in museums or in situ. They offer a prominent resource as defence against religious fundamentalism, as their ubiquity makes them difficult to explain by alternative theories. The fact that species are never found in strata outside their era supports the scientific view of life's development rather than those found in religious texts (the Old Testament, for example, erroneously states that birds were created prior to all other land animals).
To date, no DNA has been found over about 800,000 years old. This means that many of the details of the history of life rely primarily on fossil evidence. It's therefore good to note that even in an age of high-tech science, the painstaking techniques of paleontology can shed light on biology in a way unobtainable by more recent examples of the scientific toolkit. Of course, the study is far from fool-proof: it is thought that only about ten percent of all species have ever come to light in fossil form, with the found examples heavily skewed in favour of shallow marine environments.

Nevertheless, paleontology is a discipline that constantly proves its immense value in expanding our knowledge of the past in a way no religious text could ever do. It may be easy to understand what fossils are, but they are assuredly worth their weight in gold: precious windows onto an unrecoverable past.