Friday, 11 August 2017

From steampunk to Star Trek: the interwoven strands between science, technology and consumer design

With Raspberry Pi computers having sold over eleven million units by the end of last year, consumer interest in older technology appears to have become big business. Even such decidedly old-school devices as crystal radio kits are selling well, whilst replicas of vintage telescopes are proof that not everyone has a desire for the cutting-edge. I'm not sure why this is so, but since even instant Polaroid-type cameras are now available again - albeit with a cute, toy-like styling - perhaps manufacturers are just capitalising on a widespread desire to appear slightly out of the ordinary. Even so, such products are far closer to the mainstream than left field: instant-developing cameras for example now reach worldwide sales of over five million per year. That's hardly a niche market!

Polaroid cameras aside, could it be the desire for a less minimal aesthetic that is driving such purchases? Older technology, especially if it is pre-integrated circuit, has a decidedly quaint look to it, sometimes with textures - and smells - to match. As an aside, it's interesting that whilst on the one hand current miniaturisation has reduced energy consumption for many smaller pieces of technology from the Frankenstein laboratory appearance of valve-based computing and room-sized mainframes to the smart watch etal, the giant scale of cutting-edge technology projects require immense amounts of energy, with nuclear fusion reactors presumably having overtaken the previous perennial favourite example of space rockets when it comes to power usage.

The interface between sci-tech aesthetics and non-scientific design is a complicated one: it used to be the case that consumer or amateur appliances were scaled-down versions of professional devices, or could even be home-made, for example telescopes or crystal radios. Nowadays there is a massive difference between the equipment in high-tech laboratories and the average home; even consumer-level 3D printers won't be able to reproduce gravity wave detectors or CRISPR-Cas9 genome editing tools any time soon.

The current trend in favour - or at least acknowledgement - of sustainable development, is helping to nullify the pervasive Victorian notion that bigger, faster, noisier (and smellier) is equated with progress. It's therefore interesting to consider the interaction of scientific ideas and instruments, new technology and consumerism over the past century or so. To my mind, there appear to be five main phases since the late Victorian period:
  1. Imperial steam
  2. Streamlining and speed
  3. The Atomic Age
  4. Minimalism and information technology
  5. Virtual light

1) Imperial steam

In the period from the late Nineteenth Century's first generation of professional scientists up to the First World War, there appears to have been an untrammelled optimism for all things technological. Brass, iron, wood and leather devices - frequently steam-powered - created an aesthetic that seemingly without effort has an aura of romance to modern eyes.

Although today's steampunk/alternative history movement is indebted to later authors, especially Michael Moorcock, as much as it is to Jules Verne and H.G. Wells, the latter pair are only the two most famous of a whole legion of late Victorian and Edwardian writers who extolled - and occasionally agonised over - the wonders of the machine age.

I must confess I much prefer steam engines to electric or diesel locomotives, despite the noise, smuts and burning of fossil fuels. Although the pistons and connecting rods of these locomotives might be the epitome of the design from this phase, it should be remembered that it was not unknown for Victorian engineers to add fluted columns and cornucopia reliefs to their cast iron and brass machinery, echoes of a pre-industrial past. An attempt was being made, however crude, to tie together the might of steam power to the Classical civilisations that failed to go beyond the aeolipile toy turbine and the Antikythera mechanism.

2) Streamlining and speed

From around 1910, the fine arts and then decorative arts developed new styles obsessed with mechanical movement, especially speed. The dynamic work of the Futurists led the way, depicting the increasing pace of life in an age when humans and machines were starting to interact ever more frequently. The development of heavier-than-air flight even led to a group of 'aeropainters' whose work stemmed from their experience of flying.

Although scientific devices still had some of the Rube Goldberg/Heath Robinson appearance of their Nineteenth Century forebears, both consumer goods and vehicles picked up the concept of streamlining to suggest a sophisticated, future-orientated design. Items such as radios and toasters utilised early plastics, stainless steel and chrome to imply a higher level of technology than their interiors actually contained. This is in contrast to land, sea and aerial craft, whereby the practical benefits of streamlining happily coincided with an attractive aesthetic, leading to design classics such as the Supermarine seaplanes (forerunners of the Spitfire) and the world speed record-holding A4 Pacific Class steam locomotives.

3) The Atomic Age

By the 1950s practically anything that could be streamlined was, whether buildings that looked like ocean liners or cars with rocket-like tailfins and dashboards fit for a Dan Dare spaceship. However, a new aesthetic was gaining popularity in the wake of the development of atomic weapons. It seems to have been an ironic move that somewhere between the optimism of an era of exciting new domestic gadgets and the potential for nuclear Armageddon, the Bohr (classical physics) model of the atom itself gained a key place in post-war design.

Combined with rockets and space the imagery could readily be termed 'space cadet', but it wasn't the only area of science to influence wider society. Biological research was undergoing a resurgence, which may explain why stylised x-ray forms, amoebas and bodily organs become ubiquitous on textiles, furnishings, and fashion. Lighting fixtures were a standout example of items utilising designs based on the molecular models used in research laboratories (which famously gave Crick and Watson the edge in winning the race to understand the structure of DNA).

Monumental architecture also sought to represent the world of molecules on a giant scale, culminating in the 102 metre-high Atomium built in Brussels for the 1958 World's Fair. It could be said that never before had science- and technological-inspired imagery been so pervasive in non-STEM arenas.

4) Minimalism and information technology

From the early 1970s the bright, optimistic designs of the previous quarter century were gradually replaced by the cool, monochromatic sophistication of minimalism. Less is more became the ethos, with miniaturisation increasing as solid-state electronics and then integrated circuits became available. A plethora of artificial materials, especially plastics, meant that forms and textures could be incredibly varied if refined.

Perhaps a combination of economic recession, mistrust of authority (including science and a military-led technocracy) and a burgeoning awareness of environmental issues led to the replacement of exuberant colour with muted, natural tones and basic if self-possessed geometries. Consumers could now buy microcomputers and video games consoles; what had previously only existed in high-tech labs or science fiction became commonplace in the household. Sci-fi media began a complex two-way interaction with cutting-edge science; it's amazing to consider that only two decades separated the iPad from its fictional Star Trek: The Next Generation predecessor, the PADD.

5) Virtual light

With ultra high-energy experiments such as nuclear fusion reactors and the ubiquity of digital devices and content, today's science-influenced designs aim to be simulacra of their professional big brothers. As stated earlier, although consumer technology is farther removed from mega-budget science apparatus than ever, the former's emphasis on virtual interfaces is part of a feedback loop between the two widely differing scales.

The blue and green glowing lights of everything from futuristic engines to computer holographic interfaces in many Hollywood blockbusters are representations of both the actual awesome power required by the likes of the Large Hadron Collider and as an analogy for the visually-unspectacular real-life lasers and quantum teleportation, the ultimate fusion (sorry, couldn't resist that one) being the use of the real National Ignition Facility target chamber as the engine core of the USS Enterprise in Star Trek: Into Darkness.

Clearly, this post-industrial/information age aesthetic is likely to be with us for some time to come, as consumer-level devices emulate the cool brilliance of professional STEM equipment; the outer casing is often simple yet elegant, aiming not to distract from the bright glowing pixels that take up so much of our time. Let's hope this seduction by the digital world can be moderated by a desire to keep the natural, material world working.

Friday, 28 July 2017

Navigating creation: A Cosmic Perspective with Neil deGrasse Tyson


I recently attended an interesting event at an Auckland venue usually reserved for pop music concerts. An audience in the thousands came to Neil deGrasse Tyson: A Cosmic Perspective, featuring the presenter of Cosmos: A Spacetime Odyssey and radio/tv show StarTalk. The 'Sexiest Astrophysicist Alive' presented his brand of science communication to an enormous congregation (forgive the use of the word) of science fans aged from as young as five years old. So was the evening a success? My fellow science buffs certainly seemed to have enjoyed it, so I decided it would be worthwhile to analyse the good doctor's method of large-scale sci-comm.

The evening was split into three sections, the first being the shortest, a primer as to our location in both physical and psychological space-time. After explaining the scale of the universe via a painless explanation of exponents, Dr Tyson used the homespun example of how stacking the 'billions' (which of course he declared to be Carl Sagan's favourite word) of Big Macs so far sold could be stacked many times around the Earth's circumference and even then extend onwards to the Moon and back. Although using such a familiar object in such unusual terrain is a powerful way of taking people outside their comfort territory, there was nothing new about this particular insight, since Dr Tyson has been using it since at least 2009; I assume it was a case of sticking to a tried-and-trusted method, especially when the rest of the evening was (presumably) unscripted.

Billions of Big Macs around the Earth and moon

Having already belittled our location in the universe, the remainder of the first segment appraised our species' smug sense of superiority, questioning whether extra-terrestrials would have any interest in us any more than we show to most of the biota here on Earth. This was a clear attempt to ask the audience to question the assumptions that science fiction, particularly of the Hollywood variety, has been popularising since the dawn of the Space Age. After all, would another civilisation consider us worthy of communicating with, considering how much of our broadcasting displays obvious acts of aggression? In this respect, Neil deGrasse Tyson differs markedly from Carl Sagan, who argued that curiosity would likely be a mutual connection with alien civilisations, despite their vastly superior technology. Perhaps this difference of attitude isn't surprising, considering Sagan's optimism has been negated by both general circumstance and the failure of SETI in the intervening decades.

Dr Tyson also had a few gibes at the worrying trend of over-reliance on high technology in place of basic cognitive skills, describing how after once working out some fairly elementary arithmetic he was asked which mobile app he had used to gain the result! This was to become a central theme of the evening, repeated several times in different guises: that rather than just learning scientific facts, non-scientists can benefit from practising critical thinking in non-STEM situations in everyday life.

Far from concentrating solely on astrophysical matters, Dr Tyson also followed up on topics he had raised in Cosmos: A Spacetime Odyssey regarding environmental issues here on Earth. He used Apollo 8's famous 'Earthrise' photograph (taken on Christmas Eve 1968) as an example of how NASA's lunar landing programme inspired a cosmic perspective, adding that organisation such as the National Oceanic and Atmospheric Administration and the Environmental Protection Agency were founded during the programme. His thesis was clear: what began with political and strategic causes had fundamental benefits across sectors unrelated to space exploration; or as he put it "We're thinking we're exploring the moon and we discovered the Earth for the first time."

The second and main part of the event was Tyson's discussion with New Zealand-based nanotechnologist and science educator Michelle Dickinson, A.K.A. Nanogirl. I can only assume that there aren't any New Zealand astronomers or astrophysicists as media-savvy as Dr Dickinson, or possibly it's a case of celebrity first and detailed knowledge second, with a scientifically-minded interviewer deemed to have an appropriate enough mindset even if not an expert in the same specialisation.

The discussion/interview was enlightening, especially for someone like myself who knows Neil deGrasse Tyson as a presenter but very little about him as a person. Dr Tyson reminisced how in 1989 he accidentally become a media expert solely on the basis of being an astrophysicist and without reference to him as an Afro-American, counter to the prevailing culture that only featured Afro-Americans to gain their point of view.

Neil deGrasse Tyson: A Cosmic Perspective

Dr Tyson revealed himself to be both a dreamer and a realist, the two facets achieving a focal point with his passion for a crewed mission to Mars. He has often spoken of this desire to increase NASA's (comparatively small) budget so as reinvigorate the United States via taking humans out from the humdrum comfort zone of low earth orbit. However, his understanding of how dangerous such a mission would be led him to state he would only go to Mars once the pioneering phase was over!

His zeal for his home country was obvious - particularly the missed opportunities and the grass roots rejection of scientific expertise prevalent in the United States - and it would be easy to see his passionate pleas for the world to embrace Apollo-scale STEM projects as naïve and out-of-touch. Yet there is something to be said for such epic schemes; if the USA is to rise out of its present lassitude, then the numerous if unpredictable long-term benefits of, for example, a Mars mission is a potential call-to-arms.

The final part of the evening was devoted to audience questions. As I was aware of most of the STEM and sci-comm components previously discussed this was for me perhaps the most illuminating section of the event. The first question was about quantum mechanics, and so not unnaturally Dr Tyson stated that he wasn't qualified to answer it. Wouldn't it be great if the scientific approach to expertise could be carried across to other areas where people claim expert knowledge that they don't have?

I discussed the negative effects that the cult of celebrity could have on the public attitude towards science back in 2009 so it was extremely interesting to hear questions from several millennials who had grown up with Star Talk and claimed Neil deGrasse Tyson as their idol. Despite having watched the programmes and presumably having read some popular science books, they fell into some common traps, from over-reliance on celebrities as arbiters of truth to assuming that most scientific theories rather than just the cutting edge would be overturned by new discoveries within their own lifetimes.

Dr Tyson went to some lengths to correct this latter notion, describing how Newton's law of universal gravitation for example has become a subset of Einstein's General Theory of Relativity. Again, this reiterated that science isn't just a body of facts but a series of approaches to understanding nature. The Q&A session also showed that authority figures can have a rather obvious dampening effect on people's initiative to attempt critical analysis for themselves. This suggests a no-win situation: either the public obediently believe everything experts tell them (which leads to such horrors as the MMR vaccine scandal) or they fail to believe anything from STEM professionals, leaving the way open for pseudoscience and other nonsense. Dr Tyson confirmed he wants to teach the public to think critically, reducing gullibility and thus exploitation by snake oil merchants. To this end he follows in the tradition of James 'The Amazing' Randi and Carl Sagan, which is no bad thing in itself.

In addition, by interviewing media celebrities on StarTalk Dr Tyson stated how he can reach a far wider audience than just dedicated science fans. For this alone Neil deGrasse Tyson is a worthy successor to the much-missed Sagan. Let's hope some of those happy fans will be inspired to not just dream, but actively promote the cosmic perspective our species sorely needs if we are to climb out of our current doldrums.