Wednesday, 21 February 2018

Teslas in space: trivialising the final frontier

Earlier this month Elon Musk's SpaceX achieved great kudos thanks to the maiden flight of the Falcon Heavy rocket and recovery of two of the three first stage boosters. Although it has the fourth highest payload capacity in the history of spaceflight, the test did not include satellites or ballast but the unlikely shape of Musk's own $100,000 Tesla Roadster, complete with dummy astronaut. Perhaps unsurprisingly, the unique payload of this largely successful mission has led to it being labelled everything from a pioneering achievement to a foolish publicity stunt. So what's the truth behind it?

I discussed the near-future development of private spaceflight back in 2012 and if there's one thing that the programmes mentioned therein have in common is that they have all since been delayed. Rocket technology has proved to be more tricky than the current crop of entrepreneurs envisaged, Elon Musk himself giving the Falcon Heavy a fifty-fifty chance of success. As it was, two of the core booster's engines failed to fire before touchdown, leading it to crash into the sea. Musk admitted that due to safety concerns this design will never - as originally intended - be used to launch crews into space. But a successful first flight for such a large vehicle had the potential to bring enormous kudos - translate that to customers - at the expense of his lagging rivals.

It could be argued that with such a high probability of getting egg on his face, Musk was right to choose a joke payload, albeit an expensive one, as opposed to boring ballast or a (presumably heavily-insured) set of commercial satellites. Even so, some critics have argued that there is enough manmade junk floating around the solar system without adding the Tesla, never mind the slight risk of a crash-landing on Mars. The latter might seem of little import, but there's presumably the risk of microbial contamination - it's thought some bacteria could survive atmospheric entry - and as yet we're far from certain whether Martian microbes might exist in places sheltered from the ultraviolet flux.

However, researchers have run computer simulations and if anything, Earth stands a far greater chance of being the Tesla's target, albeit millions of years in the future. Indeed, Venus is the next most likely, with Mars a poor third. That's if the car doesn't fall apart long before then due to the radiation, temperature variations and micrometeoroid impacts: the 70,000km/h or so velocity means that even dust grains can behave like bullets and there's plenty of natural rock fragments whipping around the solar system.

Musk has said that his low-cost, private alternative to state-led missions is intended to spur competitors into developing similarly reusable launch vehicles, bearing in mind that fossil fuel-powered rockets are likely to be the only way into space for some time to come. Talking of Government-controlled space programmes, NASA has long since decided to concentrate on research and development and leave much of the day-to-day operations, such as cargo runs to the International Space Station, to commercial outfits. In other words, Elon Musk is only touting for business much like any other corporation. His customers already include the communications company Arabsat and the United States Air Force, so interest in the new rocket is clearly building.

As to whether Musk should have fired a $100,000 car on a one-way trip (thanks to orbital mechanics, it's not strictly speaking one-way of course but let's face it, he's never going to get it back) it also comes down to a matter of taste, when you consider the environmental and economic crises facing humanity and the planet in general. The reusability factor to the Falcon Heavy rocket design does assuage the ecological aspect, but only slightly; rockets are a pretty primitive form of transport with some hefty pollutant statistics. Unfortunately, they currently have the monopoly on any space travel for the foreseeable future - I wonder if Virgin Galactic passengers could be encouraged to buy carbon credits?

A rather smaller rocket also launched into the headlines last month in the form of the US-New Zealand Rocket Lab's Electron vehicle. Cheekily called 'Still Testing', this second - and first successful - flight of the two-stage Electron paves the way for New Zealand-based launches of small satellites at comparatively low cost. This particular mission launched several commercial satellites plus the controversial 'Humanity Star', a reflective one-metre geodesic sphere that has been likened to both a disco ball and 'glittery space garbage'. Set to decay and burn up after nine months, Rocket Lab's founder Peter Beck intended it to generate a sense of perspective among the wider public but it has instead instigated a lot of negative commentary from astronomers, environmentalists and people who enjoy getting annoyed about almost anything.

Again, all publicity might seem like good publicity, but it goes to show that many people like their space technology serious and on the level, not frivolous or containing airy gestures (or should that be vacuous ones, space being space and all?) Even this individual rocket's name goes against tradition, which usually comes down to either Greco-Roman machismo or dull acronyms such as NASA's new SLS. In addition, to the unaided eye the cosmos appears to be largely pristine and pure, lacking the visual noise that commercialism bombards us with down here on Earth. Therefore the Humanity Star appears a bit tacky and is unlikely to supply the inspiration that Beck intended, a symbol that is somewhat too puny for its lofty purpose.

An older example of an out-and-out publicity stunt at the edge of space is Felix Baumgartner's record-breaking freefall jump back in October 2012. The Red Bull Stratos mission claimed to be a serious technology test (of for example, the reefed parachute design) as well as a medical experiment on the effects of supersonic travel on a human body outside a vehicle but ultimately it appeared to be an opportunity to fulfil, at least approximately, the company slogan 'Red Bull gives you wings'.

It could be argued that the jump aided research into escaping from damaged spacecraft, but even my limited understanding of the physics involved suggests an enormous difference between Baumgartner's slow, helium-led ascent and the velocity of both newly-launched rockets and deorbiting spacecraft. The mission also claimed to be at the 'edge of space' but at thirty-nine kilometres above the Earth, the altitude was far below the nominal one hundred kilometre boundary known as the Kármán line. As so often the case in advertising, why adhere to the facts when hyperbole will help to sell your product instead? Although the jump broke a fifty-two year old free-fall altitude record, it has since been beaten in much quieter fashion by Google's Senior Vice President of Knowledge, no less. In October 2014 Dr. Alan Eustace undertook a slightly higher self-funded jump that was devoid of publicity, suggesting that far from being a technological milestone, these jumps are more akin to climbing Mount Everest: once the pioneer has been successful, the mission becomes relatively routine.

With a cynical eye it would be very easy to claim that these three missions are the result of over-inflated egos and crass commercialism. The practical issue of unnecessary space junk, combined with the uneasy impression that the universe is now available as a billboard for selling stuff, have soured these projects for many. Several space stations have already utilised food tie-ins while in 1999 Coca Cola investigated projecting advertising onto the moon, only to find the lasers required would be too powerful to be allowed (perhaps they should have contacted Dr Evil?)

In 1993 the US Government banned 'obtrusive' advertising in space, but this hasn't stopped companies in other nations from planning such stunts. A Japanese soft drink manufacturer announced in 2014 that it wanted to land a capsule of its powered Pocari Sweat beverage (sounds delightful) on the moon, the launch vehicle being none other than a SpaceX Falcon rocket. With NASA's increasing reliance on private companies, is it only a matter of time before the final frontier becomes a mere extension of the noisy, polluted, consumer goods-obsessed environment we call civilisation? Frankly, we've made a pig's ear of our planet, so how about we don't make profit margins our number one concern in outer space too?

Tuesday, 13 February 2018

Back to nature: why saving other species could save mankind

Humanity has come a long way from reliance on biologically-derived materials such as wood, bone, antler and fur. Yet this doesn't mean that organic materials have been replaced or many respects surpassed by wholly artificial ones. There are of course new carbon-based materials such as 3D graphene and carbyne that may prove to be the 'ultimate' materials when it comes to properties such as strength, but the history of the past century has shown how natural substances can inspire research too.

Perhaps the most obvious example of this is the hook and loop fastener best known by the trademark Velcro, which is essentially a copy of the burr design on Arctium (burdock) plants. Considering that taxonomists disagree wildly on the global totals of current plant, animal and fungi species - many claiming that less than 20% have been scientifically classified - it seems apparent that nature has plenty more surprises up her sleeve.

Spider silk has long been recognised as an incredibly strong material for its weight, with that generated by many species being up to five times the strength of the equivalent amount of steel. The silk produced by the Madagascan Darwin's bark spider (Caerostris darwini) is ten times stronger than Kevlar, suggesting that bullet-proof clothing manufacturers could do well by investigating it. However, a discovery by an engineering team at Portsmouth University in the UK makes even this seem humdrum: the teeth of limpets are potentially so strong - thanks to a mineral called goethite - that artificial versions of them could be used in high-performance situations, even aircraft components.

In addition to their use in construction, natural substances may prove useful in the development of new pharmaceuticals. I've previously discussed animal defence mechanisms such as that of the bombardier beetle and how small, barely noticed critters such as the peripatus deserve far more investigation. Of course the problem has been that size and aesthetics directly correlate with public attention and newsworthiness, meaning that the likes of the giant panda are used as poster species despite offering little in the way of practical advance for science and technology.

I'm not of course suggesting that species should be judged on the merits of their usefulness to humanity, but that we could probably gain a lot of practical usage from much greater study of the less well known flora and fauna still 'out there'. The resilience of tardigrades is becoming fairly well known, but there are no doubt other seemingly insignificant species with even more astonishing properties. Hydra for example are small, tentacled animals that live in fresh water; thanks to being composed mostly of stem cells they appear to have life cycles that just keep going. There also been limited research on the 'immortal' jellyfish Turritopsis dohrnii; this is surprising, given that the advances in gene splicing technology such as CRISPR-Cas9 and TALEN might lead to important medical breakthroughs, not just glow-in-the-dark pets.

In addition, the race to generate new antibiotics to replace those ineffective against 'superbugs' would suggest any short-cuts that can be taken should be taken. I remember watching a 2006 British murder mystery programme in which people were killed during a hunt for rare South American seeds containing anti-malarial properties. This may be pure fiction, but considering that artemisinin-resistant 'supermalaria' is now on the horizon, the script was somewhat prescient.

The idea behind all this is simple: delving into an existing complex chemical compound is far easier than trying to generate a purely synthetic one from scratch. This is why it is important to conserve small and insignificant species, not just the pandas, elephants and rhinos. Who's to say that a breakthrough medicine or construction material isn't already in existence, just hiding around the corner (or rather, in the genome) of some overlooked species of animal, plant or fungi?

With superbug-beating pharmaceuticals and climate mitigation technology a priority, we're shooting ourselves in the foot if we let an increasing number of unconsidered species became extinct. As I discussed last month all sorts of organisms are now in serious trouble from global amphibian populations via North American snakes and bats to the mighty kauri trees of New Zealand. Just saving a few specimens of doomed species in freezers or formalin is unlikely to be enough: shouldn't we endeavour to minimise species loss for many reasons; and if we must have an economic motive, what about their potential benefit to mankind? Not for nothing has nature been deemed 'the master crafts(person) of molecules' and we lose volumes in that library at own expense.

Wednesday, 24 January 2018

Low-key wonders: how small-scale innovation can aid the developing world

The success of mega-budget science experiments such as the Large Hadron Collider (LHC) and Laser Interferometer Gravitational-Wave Observatory (LIGO) has quite rightly generated widespread praise for these technological marvels. This has led to plenty of discussion regarding similar international endeavours now in the pipeline, such as the Square Kilometre Array (SKA). However, numerous far smaller, cheaper projects have been largely overlooked, despite their potential to offer practical improvements to millions of humans and in some cases, to the environment as well. Although not nearly as glamorous as their far larger counterparts, these innovative schemes - at least in application if not necessarily in technology - are surely as important and deserve more attention than that so far given to them.

The projects in question are aimed towards improving the quality of life in developing nations and as such tend to fall into one of a few key categories:
  1. Fuel efficiency and non-fossil fuel energy sources
  2. Water, nutrition and food preparation
  3. Medicine and hygiene
  4. Low-cost consumer electronics
The companies and inventors conceiving these schemes are based around the world in both developing and developed countries, with most having little if any association with multi-national manufacturers. Indeed, such has been the lack of interest from traditional industry that some of the projects have relied on a few far-sighted entrepreneurs or crowdfunding schemes. In some cases it appears that the less sophisticated the technology being developed, the more successful the product; clearly, lack of funding for research and development can limit the efficiency and reliability of new devices. Although the World Bank estimates that the crowdfunding market could generate ninety to ninety-five billion US dollars by 2030, the lack of secure financial infrastructure and limited ecommerce experience in developing nations mean that its infoDev global partnership programme is finding it tricky to help small-scale innovation take off in these countries.

1. Fuel efficiency and non-fossil fuel energy sources

An irregular electricity supply if available at all is still a prominent problem in developing countries, so millions of poor households rely on dangerous and inefficient forms of lighting and cooking. Kerosene lamps for example, in addition to causing health issues from smoke inhalation are responsible for three percent of the world's carbon dioxide emissions. One simple yet effective solution comes in the form of the GravityLight, whereby a bag of slowly descending ballast drives a generator to power an LED light for about twenty minutes before it needs resetting.

Other devices are less innovative but still very useful, such as Princeton University-developed SunSaluter, one of several compact solar panel products being designed to optimise energy collection, in this particular instance with the ability to rotate and so follow the sun across the sky. Another alternative energy scheme currently being prototyped is called ROTOR and uses a small floating device to generate hydro-electric power. These local-level systems are not only environmentally friendly but would relieve poor families of having to buy fossil fuels such as kerosene. Unfortunately, many are still at the development stage and lack of funding usually means slow progress in implementation.

Another invention that utilises existing components without any moving parts is the Eco-Cooler, which uses halved plastic bottles to drastically reduce temperatures in houses without needing a power source. This may not be cutting edge technology per se, but as per a previous post from 2010, this simple ingenious solution may prove to a wider public how they can help themselves and the environment simultaneously.

2. Water, nutrition and food preparation

If water is the new oil then devices that can heat and/or purify it at the same time as saving money and lessening environmental impact cannot be far behind in importance. Inventions in this category range from incremental improvements (i.e. more efficient versions of conventional products such as the Berkeley-Darfur Stove) to the innovative Jompy Water Boiler prototype, which heats water to purify it at the same time as cooking food and saving fuel.

Water purification systems are being tested, as are waste recyclers that can convert household organic waste at low-cost into drinking water or even cooking gas. These devices are being developed to use little or no power to operate, and in the case of Indian conglomerate Tata's Swach water filter, a combination of traditional rice husk ash and nanosilver forms the active ingredients. As I've discussed elsewhere nanosilver is not the most environmentally friendly of substances but at twenty-five US dollars this device has become widespread over the past eight years, presumably saving the lives of innumerable children in regions without a safe water supply.

At the other end, so to speak, the UK's Cranfield University has received funding from the Bill and Melinda Gates Foundation to complete development of the self-powered Nano Membrane Toilet. This is one of several such designs that don't require connection to plumbing as they work without an external water supply or outflow. Indeed, the Cranfield design is a net producer of water and possibly even energy too.

Developing countries are also seeking ways to improve nutrition themselves, such as the seventeen African nations involved in the Sweetpotato for Profit and Health Initiative. This ten-year programme aims to reduce vitamin A deficiency by breeding a new strain of sweet potato, especially aimed at households with very young children. It may not involve cutting-edge genetic modification, but just the work required to overcome the social and economic conservatism of the region is probably as key to success as the agricultural science.

3. Medicine and hygiene

In a crossover between nutrition and medicine, the advertising and marketing agency Grey Singapore has been involved with the distribution of the Life Saving Dot, an iodine-rich bindi designed to cure iodine deficiency in many rural Indian women. In this instance, the use of the traditional design means that the product shouldn't face suspicion from its target market.

In 2010 a German former teacher Martin Aufmuth began developing a simple method to quickly produce pairs of spectacles without the need for a power supply. His OneDollarGlasses are now selling worldwide, further proof that low-tech ingenuity can generate enormous benefits.

More high-tech schemes are also in development that could prove to be extremely efficient yet relatively low-cost life savers. Médecins Sans Frontières has been studying the use of both 3-D printing and virtual reality for setting up field hospitals while the e-NABLING the Future project coordinates volunteers who can supply 3-D printed items such as prosthetics. The disaster-relief NGO Field Ready aims to provide 'faster, cheaper and better' aid via the manufacture of 3-D printed elements, including medical items, a sure sign that this technology is probably the best method of rapidly producing custom components in regions lacking sophisticated infrastructure.

Solar power is also being co-opted to replace conventional batteries in devices such as hearing aids, with the Botswana-based Deaftronics and its Solar Ear unit a pioneer in this field. Presumably, as smart clothing technology becomes more common, such devices will be able to use the wearer's own motion to supply the necessary power.

Pharmaceutical distribution and illness diagnosis techniques are also on the verge of radical improvements, particularly in Africa. An example of the former is the Ghanaian-based mPedigree's use of a free SMS code to confirm that the pharmaceutical is genuine. MIT research is aiding the latter, thanks to a series of paper strip tests for conditions ranging from Ebola to dengue fever.

4. Low-cost consumer electronics

The first example I came across of such devices was British inventor Trevor Baylis' wind-up radio, developed in 1995. Having been rejected by mainstream radio manufacturers, Baylis was lucky to gain the support of entrepreneurs so that he could achieve mass-production.

One of the few major companies to take an interest in the bottom end of the market has been Vodafone, whose 150 and 250 model mobile phones appeared in 2010 and were aimed solely at developing nations; the importance of rapid yet cheap communication in rural areas should not be underestimated. Other devices have not been so lucky with their manufacturers, with the world's cheapest tablets, the Indian Government-promoted Ubislate/Aakash range, suffering from so many design and build issues that the device is unlikely to satisfy its intended market any time soon.

Although the Aakash fiasco may inhibit other Western corporations from wanting to engage in similar projects, the mini paradigm shifts that some of these projects have engendered could well generate a two-way interaction between developed and developing nations. Rather than playing safe by fiddling with small iterations based on existing designs, the potential for wholly new products manufactured by smarter, more efficient methods has been given a solid proving ground by some of the examples described above. This 'trickle up' method may prove to be the way in which multinationals get involved in this level of project; needless to say, the timing couldn't be more apt.

From long-lasting, low voltage light bulbs to non-fossil fuel road vehicles, there is a multitude of examples of how big business has traditionally stifled innovation if it meant potential loss of profit. In some cases, shortened product lifespan and incremental upgrade release cycles have forced consumers to participate in a planned obsolescence programme, at the cost of the wider environment as well as customer bank balance. With talk of a several trillion US dollar funding gap in the United Nations' sustainable development goals - which the USA is now more than ever unwilling to subsidise - any means to replace aid relief with self-sustaining processes and local manufacturing are to be welcomed. There's enormous potential out there for developing nations to improve dramatically without relying on charitable hand-outs or the dubious support of big business. Hopefully the flow of  inventors, entrepreneurs and volunteers will continue building that future.

Tuesday, 9 January 2018

Amphibian Armageddon and killed-off kauri: the worldwide battle against fighting fungi

I recently wanted to visit the Ark in the Park, an open sanctuary in the Waitakere Ranges west of Auckland that uses constant predator control to protect native plants and animals. However, I was stopped by a sign stating that Te Kawerau a Maki, the Maori of the district, have placed a rāhiu or prohibition on entering the forest. Although not legally binding, the rāhui is intended to stop people walking through the area and spreading infection, serving in place of any notice by the New Zealand Government or Auckland City Council, since the latter two bodies have failed to take action. Perhaps this inactivity is because the infection does not directly affect humans or farming. Instead a fungus-like pathogen is killing the native kauri Agathis australis, one the largest tree species on Earth.

Known to live for over a thousand years and grow to over fifty metres tall, the largest kauri are seen by Maori as the lords of New Zealand's northern forests. Yet since 2009 the microscopic water mould Phytophthora agathidicida has been causing kauri dieback at an ever-increasing rate. Surveys in the Waitakeres show that most of the infected areas are within ten metres of walking paths and therefore the mould is being spread by visitors to the lowland forests who fail to thoroughly clean their shoes with the supplied disinfectant spray. In a truly David versus Goliath battle between the miniscule mould and giant trees, introduced species such as possums and pigs are aiding the former by accidentally spreading the minute spores.

Auckland Council reported last winter that the amount of affected kauri has reached 19 percent, meaning a doubling in scale in only five years. Since there is no cure for infected kauri, some scientists are now predicting the extinction of this magnificent tree in the near future. The combination of the pathogen's microscopic size with its rain-based activation after dormancy means there are currently no methods that can prevent the infection from spreading. In a way, the rāhui may just slow down the inevitable. Considering the immense kauri are home to a unique ecosystem of epiphytes, orchids and associated symbiotic organisms, the future flora and fauna of kauri-free forests may well be markedly different from the Waitakeres as they are today.

I've previously discussed the ubiquity of the unsung fungi and how prominent they are even within totally man-made environments. It seems surprising that New Zealand's authorities, so keen to preserve native birds and reptiles, are failing to take any action to at least buy time for the kauri; perhaps they have already deemed extinction as unavoidable and not worth spending public funds on.

The kauri are far from being the only organisms currently threatened by fungi or their kin. Over the past decade more than thirty snake species in the eastern and mid-western United States have started succumbing to what has been termed Snake Fungal Disease. The culprit is thought to be a soil-based fungus called Ophidiomyces ophiodiicola, with a similar organism now also thought to be affecting snakes in the United Kingdom and mainland Europe. Research suggests that up to ninety percent of infected snakes die from the condition, so clearly if humans and their vehicles play unwitting hosts to the microscopic fungal spores, the future for the world's snake population looks depressing. Although many people might not like snakes, ecosystems without them may see an explosion in the numbers of their prey animals, including rodents; to say the least, this would not bode well for crop farmers!

Perhaps the best-known of the global fungal-caused epidemics is the amphibian-decimating Chytridiomycosis, whose affects were initially recognised twenty years ago but may have started much earlier. As its spores can live in water, the responsible Batrachochytrium fungi are ideally situated to infect about one-third of all frog, toad, newt and salamander species. Again, it is thought that man has inadvertently caused the problem, as the African clawed frog Xenopus laevis is an immune carrier of the fungus and has been exported worldwide since the 1930's.

Another contributor may be climate change, as amphibian-rich forests experience temperature variations that are ideal for the chytrid fungi to proliferate in. As a final nail in the coffin - and as with bees and Colony Collapse Disorder - pesticides may play a key role in the epidemic. Agrochemicals are shown to lower the amphibian immune response and so increase their susceptibility to infection. However, the situation isn't completely hopeless: here in New Zealand, researchers at the University of Otago have used chloramphenicol, an antibiotic eye ointment, to cure infected Archey's frogs (Leiopelma archeyi). This species is already critically endangered even without the chytrid epidemic; hopefully, the cure will prove to be the saviour of other amphibian species too. This would be just as well, considering the dangerous side effects found in other treatments such as antifungal drugs and heat therapy (the latter involving temperature-controlled environments that are lethal to the pathogen).

During the past decade, over five million North American bats have been killed by white-nose syndrome, which is caused by the fungus Pseudogymnoascus destructans. Again, humans have inadvertently spread the pathogen, in this case from Eurasia, where the bat species are immune to it, to North America, where they are most definitely susceptible. The bats are only affected during hibernation, which makes treating them difficult, although brief exposure to ultraviolet light has been shown to kill the fungus. This may prove to be a cure to infected colonies, although how the UV could be administered without disturbing the cave-roosting populations will take some figuring out.

It appears then that a combination of manmade causes (international travel, climate change and chemical pollution) is creating a field day for various tiny fungi or fungus-like organisms, at the expense of numerous species of fauna and flora. The culprits are so small and pervasive that there is a little hope of preventing their spread. Therefore if conventional cures cannot be found, the only hope for the likes of the kauri might be the use of genetic engineering to either give the victim resistance or to kill off the pathogen. This science fiction-sounding technology wouldn't be cheap and its knock-on effects unknown – and potentially disastrous. The former technique would presumably not be any use to the existing populations, only to the germ line cells of the next generation. Whatever happens, our short-sighted approach to the environment is certainly starting to have major repercussions. A world without the magnificent kauri, not to mention many amphibian, reptile and mammal species, would be a much poorer one.

Friday, 22 December 2017

PET projects: can nature destroy plastic pollution?

One of key markers of the Anthropocene - the as yet unofficial term for a human-impacted global environment - is the deposition of manmade pollutants on land and in the oceans. A prominent component of these pollutants is plastic-based consumer waste; as I mentioned in March 2010, the UK was then using 17.5 billion plastic bags each year. Happily, the introduction of a charge on lightweight plastic shopping bags in the UK has reduced usage by a fantastic 85%. Various nations have introduced similar or even better legislation, but unfortunately in that key polluter the USA only California has had any success in overcoming corporate lobbying. The situation in Trump's America looks unlikely to change any time soon, since several states have even prohibited such bans at a county level!

Therefore, despite the best endeavours of some nations, most recently Kenya, around 80 million tonnes of polyethylene-based packaging and bags are still being produced worldwide each year. The amount that is recycled varies considerably from nation to nation, with the US Environmental Protection Agency recording only 12% of America's plastic as being recycled. As a result, it is estimated that about 12 million tonnes of plastic is annually deposited in the oceans, with even deep-sea species found to have been contaminated.

We've all seen images of beaches on the most remote, uninhabited islands smothered by tiny, multicoloured pieces of plastic, but apart from being unsightly, what are the potential dangers to the global ecosystem and humans in particular? By ingesting plastics, animals risk either choking or starving to death, or being poisoned by chemicals leaching from the material. Even if the latter doesn't quickly kill the critter (which could be anything from sea birds to turtles to baleen whales), substances such as Bisphenol A can build up in their system. In addition to the damage caused to the animals themselves, toxins can upset a species' reproductive cycle. For instance, some of the leached chemicals mimic estrogen, potentially inhibiting development of male offspring.

Of course, with such a range of species being affected, isn't it feasible that there will be knock-on effects to the human food chain? Even if there aren't obvious reductions in commercially-caught species, there is a high likelihood that wider food webs could be severely altered - and not for the good - or even that we on the verge of ingesting copious amounts of microscopic plastic particles. Even people who never eat seafood won't be able to avoid it, since animal feed may contain contaminated fishmeal.

It isn't just the obvious items that are the key pollutants, either: plastic microbeads (i.e. less than 1mm along their longest side) are prominent in rinse-off personal care products. Whoever invented them clearly has zero environmental credentials, bearing in mind there's no ability to recycle or reuse them; in fact, about 8 quadrillion microbeads get washed down the plug hole every day.  The World Trade Organisation is making some inroads into their removal - here in New Zealand their manufacture and sale will be banned by the middle of next year - but research has found they are already pretty much ubiquitous in the environment wherever these products are in use.

Therefore it makes sense to tackle the problem as soon as possible. Since some countries are reticent to implement legislation, or like China and India are having difficulties enforcing it, there is much to be said for seeking ways to degrade plastic waste in the most efficient way possible. Research over the past decade has revealed an astonishing conclusion: only about 1% of the expected amount of waste material has been found in the oceans. Either it is rapidly being buried in the sea bed, or more likely, something is breaking it down. Is this possible? Last year, a team of Japanese researchers found a microbe called Ideonella sakaiensis that is able to digest polyethylene terephthalate (PET), which is used in such mass-produced items as drink bottles. This suggests that there may be marine microorganisms with a taste for human waste, diligently destroying our plastic rubbish and preventing even worse effects on ocean life.

The Japanese research hints that it may be possible to use vats of these microbes to break down at least waste PET and then recycle it, with a much greater efficiency than is currently possible. Without interference, PET is thought to take between four hundred and one thousand years to completely degrade, presumably depending on the shape and thickness of the item. In contrast, Ideonella is able to digest the material in only six weeks. About 56 million tonnes of PET, mostly for bottles, is produced each year. Here in New Zealand, less than half of this material is recycled, the first (conventional) PET recycling plant having started work in August. So there's plenty of scope for a natural solution, should it become usable on an industrial scale.

This begs the question: are there any other critters with similar capabilities?  Last month a team at Texas Tech University reported that caterpillars of the pantry moth Plodia interpunctella have been able to thrive on polyethylene. Research showed that their digestive system contains various species of bacteria - different from the gut microbes in caterpillars that eat natural foods - which are capable of breaking down the plastic. However, what worries me is that if these microbes become selected for in the wild, will this change have the same sort of disastrous result that the inadvertent artificial selection of MRSA has had?

Some worm species are known to eat natural polymers similar to man-made plastics, such as the beeswax in hives, and so have been tested for their ability to break down plastic as well. Further research is required to determine whether the work is being done by microbes in the worms' digestive systems, but one issue with worm-digested plastic is that by-products include the toxic ethylene glycol. Apart from bacteria, Chinese researchers using plastic waste from Pakistan have found that the fungus Aspergillus tubingensis can degrade polyester polyurethane. After some years of disappointing results in mycoremediation (the use of fungi to break down man-made materials) this may prove to be a breakthrough.

The big question then is has nature done it again? After all, it does have about three and a half billion years' head start on the human race. Plastic waste is clearly a big issue and for the majority of humanity who live away from the sea (or rubbish dumps, for that matter) it's fairly easy to think "out of sight, out of mind". However, it pays to highlight the potential danger of changing ecosystems on a global scale, including the extinction of unseen and unknown species, including microbes that are vital to maintaining stability. I've previously mentioned the problems with concentrating on a few key 'poster' organisms at the expense of those that may play a pivotal role - now, or in the future - to our nutritional, pharmaceutical or technological needs. Therefore we need to be certain that the solution won't be as bad as the problem, when it comes to using nature itself to destroy the waste we unthinkingly generate. Surely a good compromise would be to minimise the amounts of plastic rubbish we generate in the first place?