Wednesday 30 October 2019

Our feline friends - not so miaowvellous after all?


I've published a few posts concerning citizen science, from the active participation in conservation-orientated projects here in New Zealand to the more passive involvement in distributed computing projects that I briefly mentioned back in 2012.

A type of public involvement in scientific research half way between these examples has been developed to utilise the human ability to match up patterns, a skill which artificial intelligence is only just beginning to replicate. One early implementation of this was the Galaxy Zoo crowdsourced project, in which volunteers examining photographs taken by robotic, Earth-based telescopes to classify galaxies. Since 2009, the Zooniverse online portal has utilised more than one million volunteers to examine data on behalf of over fifty projects, many of which are within STEM disciplines.

Although initially often used for astronomy or astrophysics programmes, crowd sourcing platforms have latterly found an important role in conservation and biodiversity research. An example is the Smithsonian Institute-sponsored eMammal, which specialises in the examination of camera trap footage to identify the locations of animal species on a scale that could not obtained by other means.

In line with the outcome of the perhaps too ambitious Predator-free 2050 programme, one project that may require the assistance of the Zooniverse volunteers is analysis of feral cat DNA from New Zealand's Auckland Island. The DNA, derived partially from fecal matter (nice), is to discover what the cats on the island are eating. Although this research aims to discover the best way to remove invasive species from Auckland Island (cats are known to predate on native seabird species) there now appears to be another issue caused by cats living near coastlines.

Over the past fifteen years a body of evidence from around the world has shown that cats are directly responsible for the deaths of marine mammals. This might sound rather unlikely, but the microbial culprit, Toxoplasma gondii, is only found in the digestive system of cats. Both feral and domestic cats that catch and eat infected rodents or birds can acquire the parasite and pass it by their fecal matter into the wider environment via fresh water run-off or sewage outfalls. Eventually, it enters the marine food chain, reaching the apex in the former of cetaceans and pinnipeds among others.

Species such as sea otters, seals, and dolphins have been killed by toxoplasmosis, according to autopsies of specimens washed up on seashores as far apart as New Zealand and the USA. Increasing temperatures (thanks again, man-made climate change) and greater rainfall can spread toxoplasmosis even further. In addition to direct contamination from fecal matter, cat owners who flush cat litter down the toilet can also start the highly resilient microbes on a journey via sewer networks to the ocean. Among the New Zealand species proven to have been killed by infection are the critically endangered Maui dolphin and locally vulnerable Hector’s dolphin, so there is definitely a need for some prompt action.

It isn't just a case of the top marine predators eating infected fish or squid: sea mammals could swallow oocysts (basically, the protozoan equivalent of a fertilised egg) directly from water. Only now that Maui dolphins are falling victim to the parasite is the story of this deadly microbe becoming better known. Not incidentally, our species can also become ill with toxoplasmosis due to exposure to cat feces, with serious consequences for babies born to infected mothers and to people with compromised immune systems. In addition to the other potential dangers from the likes of Salmonella, Listeria and E. coli, the recent fad for 'raw' (i.e. unpasteurised) milk could lead to a far higher rate of toxoplasmosis in humans.

What can be done? Well, cat owners could stop flushing kitty litter down their toilets for a start. Is it a case that there are just too many cats in the world? Some recent reports claim that Homo sapiens and their domesticated species constitute 96% of the global mammal biomass. As for cat numbers, an estimate last year suggested that there are six hundred million pet cats and the same number of feral individuals worldwide.

Is this just too many? I admit that I'm fairly biased as it is: a few cat owners I know here in Auckland have pets that regularly kill skinks and it's only luck that these are invasive rainbow skinks rather than rare native species. When it comes to the likes of the last 55 Maui dolphins falling prey to a disease spread by an extremely common domesticated species, I'd rather be over-zealous than over-cautious in developing a solution. As far as I can see, the best control methods would be a vast reduction in cat numbers or the development of an innoculation for our feline friends that can kill the parasite. Somehow I doubt either course of action is likely, which means a far from purrfect method would be to educate cat owners as to how to minimise the spread of Toxoplasma gondii. So if you are a cat owner, or know of one, I guess this could be your time to shine...

Sunday 29 September 2019

Saving the oceans with chitosan: are prawns the new plastic?

Earlier in the year, I wrote a post concerning a new, extremely strong, material derived from limpet teeth. Bearing in mind our current reliance on oil-derived materials, another form of marine life may hold the key to the global plastic pollution crisis.

Every year over six million tons of crab, lobster and shrimp is processed as seafood. This industry's by-products include the chitin-rich carapaces of all these creatures. Chitin is a substance found in fungi and invertebrates, with a range of uses from making paper to food processing and biotech to water treatment. In the past five years, research has been gaining momentum for another use for chitin which may prove to be a game changer (and for once, this hyperbole could well prove an understatement).

Currently about 335 million tons of plastics are produced annually, of which one-third is for single (and therefore disposable) use. Only about twenty percent of the total is recycled. We have all seen news items about the Great Pacific Garbage Patch and the large numbers of wildlife species affected by ingesting such material. We are now also beginning to understand that we humans too are ingesting microplastic particles that contaminate our food chains, to the tune of forty to fifty thousand particles per person per year. Quite apart from the plastic itself, the unwanted materials in our food may contain absorbed chemicals and heavy metals known to be toxic. And that's separate to all the microplastic that rains down on us and our food from practically every manmade structure we enter.

In 2014 a biodegradable polymer was developed from chitosan, a material made by subjecting the chitinous carapaces of marine arthropods, primarily crustaceans, to a range of treatments. Chitosan has been in use for some decades in diverse fields such as medicine, as a biopesticide and as a filtration and clarification material. However, the acids used to produce it have markedly affected its green credentials. Over the past five years a rather more ecologically-friendly set of processing techniques, including ultrasonics and microwaves, have been developed. The upshot of this means that chitosan could eventuate into one of the most ubiquitous materials on the planet. Pioneering companies have been set up around the world to convert chitosan into biodegradable packaging.

One such corporation is the Scottish-based CuanTec, who are developing food packaging that is antimicrobial while also being compostable. They claim to be the first company able to use bacterial fermentation to extract chitin from langoustine shells on an industrial scale, which is subsequently processed into chitosan. The antimicrobial properties of the packaging means that the foodstuffs it contains will have a longer - possibly even doubled - shelf life, with protection against the likes of Salmonella, Listeria and E. coli.

The first three types of packaging are said to be a food film wrap, single-use milk bottles and beer can collators (the latter incidentally for a company who produce their alcohol from stale bread rolls!) However, to date CuanTec has sought crowd-funding in order to begin commercial operations, which seems astonishing. Their products are predicted to cost slightly more than the petro-chemical alternatives, but hopefully industry will realise that the advantages far outweigh this.

Across the Atlantic from CuanTec other companies are climbing on a similar bandwagon. Mari Signum in Virginia, USA, is utilising an ionised liquid (including vinegar) technique to extract chitin for the development of various products, including 3D-printed alternatives to plastic packaging. As a recognition of their efforts, last year the U.S. Environmental Protection Agency presented them with their Green Chemistry Challenge Award. They're not the only American company to investigate the potential of swapping plastics with chitosan: the California-based CruzFoam have expanded their research from chitin-derived surfboard cores to packaging aimed to replace polyurethane foam.

Universities in various nations are also working with chitin to produce bioplastics that combine with other materials such as cellulose. The National University of Singapore has combined grapefruit seed extract with chitosan to produce a composite film for use a food packaging which can extend the shelf life of perishables such as bread. In a nation as humid as Singapore, you can clearly see the savings to the consumer if such materials become commercially available - assuming the affected food producers don't buy up and block the relevant patents, that is!

Clearly, chitosan looks like a material whose time has come. Apart from the potentially vast reduction in plastics, the widespread use of chitosan-derived food packaging would likely lead to much less food being thrown away because it has spoiled. It's unlikely that chitosan manufacturers would run out of their raw material either, since chitin is the planet's second most abundant biopolymer - climate change effects on marine crustaceans not withstanding. I can't help but ponder just how many more natural substances are waiting their turn to be the next wonder material?