Showing posts with label 2001 A Space Odyssey. Show all posts
Showing posts with label 2001 A Space Odyssey. Show all posts

Saturday, 1 April 2017

The moons of Saturn and echoes of a synthetic universe

As fans of Star Wars might be aware, George Lucas is nothing if not visually astute. His thumbnail sketches for the X-wing, TIE fighter and Death Star created the essence behind these innovative designs. So isn't it strange that there is a real moon in our solar system that bears an astonishing resemblance to one of Lucas's creations?

At the last count Saturn had 53 confirmed moons, with another 9 provisionally verified - and as such assigned numbers rather than names. One of the ringed planet's natural satellites is Mimas, discovered in 1789 and at 396 kilometres in diameter about as small as an object can be yet conform to an approximate sphere. The distinguishing characteristic of Mimas is a giant impact crater about 130 kilometres in diameter, which is named Herschel after the moon's discoverer, William Herschel. For anyone who has seen Star Wars (surely most of the planet by now), the crater gives Mimas an uncanny resemblance to the Death Star. Yet Lucas's original sketch for the battle station was drawn in 1975, five years before Voyager 1 took the first photograph with a high enough resolution to show the crater.


Okay, so one close resemblance between art and nature could be mere coincidence. But amongst Saturn's retinue of moons is another with an even more bizarre feature. At 1469 kilometres in diameter Iapetus is the eleventh largest moon in the solar system. Discovered by Giovanni Cassini in 1671, it quickly became apparent that there was something extremely odd about it, with one hemisphere much brighter than the other.

As such, it attracted the attention of Arthur C. Clarke, whose novel 2001: A Space Odyssey described Japetus (as he called it) as the home of the Star Gate, an artificial worm hole across intergalactic space. He explained the brightness differentiation as being due to an eye-shaped landscape created by the alien engineers of the Star Gate: an enormous pale oval with a black dot at its centre. Again, Voyager 1 was the first spacecraft to photograph Iapetus close up…revealing just such a feature! Bear in mind that this was 1980, whereas the novel was written between 1965 and 1968. Carl Sagan, who worked on the Voyager project, actually sent Clarke a photograph of Iapetus with a comment "Thinking of you..." Clearly, he had made the connection between reality and fiction.

As Sagan himself was apt to say, extraordinary claims require extraordinary evidence. Whilst a sample of two wouldn't make for a scientifically convincing result in most disciplines, there is definitely something strange about two Saturnian moons that are found to closely resemble elements in famous science fiction stories written prior to the diagnostic observations being made. Could there be something more fundamental going on here?

One hypothesis that has risen in popularity despite lacking any hard physical evidence is that of the simulated universe. Nick Bostrum, the director of the University of Oxford's Future of Humanity Institute has spent over a decade promoting the idea. Instead of experimental proof Bostrum uses probability theory to support his suppositions. At its simplest level, he notes that the astonishing increase in computing power over the past half century implies an ability in the near future to create detailed recreations of reality within a digital environment; basically, it's The Matrix for real (or should that be, for virtual?)

It might sound like the silliest science fiction, as no-one is likely to be fooled by current computer game graphics or VR environments, but with quantum computing on the horizon we may soon have processing capabilities far beyond those of the most powerful current mainframes. Since the ability to create just one simulated universe implies the ability to create limitless - even nested - versions of a base reality, each with potentially tweaked physical or biological laws for experimental reasons, the number of virtual realities must far outweigh the original model.

As for the probability of it being true in our universe, this key percentage varies widely from pundit to pundit. Astronomer and presenter Neil deGrasse Tyson has publicly admitted he considers it an even chance likelihood, whilst Space-X and Tesla entrepreneur Elon Musk is prepared to go much further, having stated that there is only a one in a billion chance that our universe is the genuine physical one!

Of course anyone can state a probability for a hypothesis as being fact without providing supporting evidence, but then what is to differentiate such an unsubstantiated claim from a religious belief? To this end, a team of researchers at the University of Bonn published a paper in 2012 called 'Constraints on the Universe as a Numerical Simulation', defining possible methods to verify whether our universe is real or virtual. Using technical terms such as 'unimproved Wilson fermion discretization' makes it somewhat difficult for anyone who isn't a subatomic physicist to get to grips with their argument (you can insert a smiley here) but the essence of their work involves cosmic rays. The paper states that in a virtual universe these are more likely to travel along the axes of a multi-dimensional, fundamental grid, rather than appear in equal numbers in all directions. In addition, they will exhibit energy restrictions at something called the Greisen-Zatsepin-Kuzmin cut-off (probably time for another smiley). Anyhow, the technology apparently exists for the relevant tests to be undertaken, assuming the funding could be obtained.

So could our entire lives simply be part of a Twenty-Second Century schoolchild's experiment or museum exhibit, where visitors can plug-in, Matrix-style, to observe the stupidities of their ancestors? Perhaps historians of the future will be able to run such simulations as an aide to their papers on why the hell, for example, the United Kingdom opted out of the European Union and the USA elected Donald Trump?

Now there's food for thought.

Thursday, 27 October 2016

Murky waters: why is the aquatic ape hypothesis so popular?


Whilst not in the same class as the laughably abysmal Discovery Channel mockumentaries on the likes of mermaids and extant (rather than extinct) megalodon, the recent two-part David Attenborough BBC Radio 4 documentary The Waterside Ape has left me gritting my teeth...grrr.

The programme has confirmed something I suspected from his 2010 BBC television series and associated book, First Life: namely, that the style of his exposition takes priority over the substance of his material. I'll quickly recap on the howler he made in an episode of First Life, ironically one that featured renowned trilobite expert Richard Fortey, albeit in a different sequence. When discussing trilobites, Sir David briefly mentions that they get their name from having three segments from front to rear: head, body and pygidium (tail) - which is totally wrong!

The name is the give-away. Tri-lobe refers to the three segments across the width of the body: a central lobe and two lateral lobes. Many creatures have the head, body and tail segmentation, so it would be far from unique in trilobites. I find this example of incorrect information rather discomforting, especially from someone like Sir David who has been a fan of trilobites since childhood. You have to wonder why experts aren't invited to give BBC science and nature documentaries the once-over before broadcast, just in case any gaffes have got through to the final cut?

The issue then, is that if we non-professionals believe the content espoused by such senior figures in the field of science communication - and if such material goes without basic error-checking from professionals - how is the public to receive a half-decent science education? Of course science isn't a body of knowledge but a toolkit of investigation techniques, but few of the general public have the ability to test hypotheses themselves or access the jargon-filled original scientific papers. So relying on books and media from distinguished communicators is the primary way of increasing our STEM (Science, Technology, Engineering and Mathematics) knowledge.

Back to The Waterside Ape. The hypothesis is an old one, dating back to marine biologist - and let's face it, oddball theorist - Sir Alister Hardy's first, unpublished speculations in 1930. However, the idea didn't achieve widespread dissemination until Elaine Morgan began to publicise it in the early 1970's. Otherwise known as a fiction writer, Morgan's output on the aquatic ape hypothesis was originally considered to be a feminist critique rather than particularly serious science, bearing in mind that the author lacks professional training or experience in the field of evolutionary biology.

Whether it is thanks to dissemination via the World Wide Web, her pro-aquatic ape books have become ever more popular over the past twenty years. This is in spite of the ever-increasing number of hominin fossils and sophisticated analytical techniques that have shown little support for the idea. I'm not going to examine the evidence for and against the hypothesis, since that has been done by many others and I'm marginally less qualified to assess it than Elaine Morgan. Instead, I'm more interested in how and why the idea has maintained popular appeal when the general consensus among the specialists is that it is profoundly incorrect.

Could it be that the engaging quality of Morgan's writing obscures a lack of dry (geddit?) analysis upon a subject that could at best be deemed as controversial - and thus fool the general readership as to its validity? Or is there more to it than that? The BBC seem to have maintained an on-going interest in supporting her work over the past two decades.

Indeed, The Waterside Ape is not David Attenborough's first foray into the idea. He made another two-part BBC Radio 4 series called Scars of Evolution back in 2005, which included some of the same interviews as the recent programmes. The BBC and Discovery Channel also collaborated in 1998 on a television documentary favouring the hypothesis called surprisingly enough The Aquatic Ape, albeit without Attenborough's involvement.

A key argument that I'm sure gets public support is that the of a radical - and female - outsider being shunned by the conservative, male-dominated establishment, with Elaine Morgan pitted against the reactionary old guard of palaeontologists, biologists, etc. Her plight has been described in the same vein as meteorologist Alfred Wegener's battle with orthodox geology between the world wars, but in Wegener's case his hypothesis of continental drift lacked a mechanism until plate tectonics was formulated several decades later. As for the aquatic ape, there seems to be a suite of models describing a gamut of ideas, from the uncontroversial speculation of hominins wading for iodine- and Omega-3-rich foodstuffs (promoting brain growth) to human ancestors being Olympic-class ocean swimmers who would feel at home in a Discovery Channel mermaid mockumentary.

We shouldn't ignore the emotive aspects of the hypothesis, which the various programmes have described as a "fascinating idea" that would be "lovely to confirm". Since most people still think of dolphins as innocent, life-saving and cute (when in fact they play brutal cat-and-mouse games with live porpoises) could this be a psychological attempt to salvage something of our own rapacious species?

Elaine Morgan admitted that her first book was a response to her annoyance with the 'killer ape' theories of the 1960's, as espoused in Robert Ardrey's seminal 1961 volume African Genesis. In these post-modern, politically-correct times of gatherers first and hunters second, Raymond Dart and Robert Ardrey's once-influential machismo ape-man has fallen from favour. Unfortunately, the famous Ardrey-influenced Dawn of Man sequence in 2001: A Space Odyssey promotes just such a viewpoint, so perhaps it isn't any wonder that supporting a more tranquil aquatic ancestry might appear to be an easy way to bring 21st century sensitivities to a world reeling from constant violence.

Another possible reason for the hypothesis' widespread support is that it relies on what appears to be an impressive accumulation of facts in the Darwinian mould, without recourse to difficult mathematics or sophisticated technical jargon. For those unable to get a clear understanding of major contemporary science (Higgs boson, anyone?) the idea of aquatic ape ancestors is both romantic and easy to digest, if the supporting evidence is taken en masse and the individual alternatives for each biological feature ignored or undeclared.

Clearly, whoever thinks that science is detached from emotion should think again when considering the aquatic/waterside/paddle-boarding ape. Although on the surface a seductive idea, the collection of proofs are selective, inadequate and in some cases just plain wrong. It might be good enough for the sloppy pseudo-scientific archaeology of Graham Hancock and Erich von Daniken, but good science needs rather more to go on. Yes, there are some intriguing nuggets, but as Dr Alice Roberts said in her critique of the recent Attenborough radio series, science is about evidence, not wishful thinking. Unfortunately, the plethora of material contains rather more subtleties than trilobite nomenclature, so I can only sigh again at just how many equally poorly-concocted ideas may be swashing around the world of popular science communication. Come on, Sir David, please read past the romance and dig a bit deeper: the world needs people like you!

Wednesday, 25 May 2016

From Dr Strangelove to Dr Evil: Hollywood's anti-science stance

Despite the decades of hard work by the likes of Bill Nye, Stephen Hawking, Carl Sagan, Stephen Jay Gould etal, there is still an enormous amount of public suspicion surrounding scientists and their work. From wavering opinion concerning climate change to the negative publicity revolving around genetically-modified crops (A.K.A. 'Frankenfoods') it seems that popular opinion of scientists isn't far above that meted out in recent years to politicians and merchant bankers.

Tabloid media cannot be solely to blame for this, although the ridiculous scaremongering stories given front page attention, frequently involving medical science, are certainly no help. Instead, I would argue that some of the blame for the public attitude to STEM (Science, Technology, Engineering and Mathematics) comes from that ubiquitous global communicator, mainstream Hollywood. So where did the world's movie capital get its ideas from?

It seems that the denigration of science and its technological applications has probably existed as long as modern science itself. Before there were films to spread the negativity, literature had a mixed opinion of the discipline. Could some of the most famous apparently anti-scientific publications from Europe have inspired Hollywood's pioneers, many of whom were European emigrés?

Jonathan Swift's third book of Gulliver's Travels concerns the scientific elite of a floating island called Laputa. First published in 1726 during the so-called Age of Enlightenment, the book is typical of Swift's no holds barred approach to satire, making much use of the learning of the day. Despite being far more concerned with social and political issues rather than an anti-scientific stance, the material is still echoed today in the popular media.

Granted, many would agree that some of the more expensive STEM research projects such as the Large Hadron Collider could wait until global issues concerning hunger, medicine, environmental degradation - and poverty in general - are solved, but then wealth is rarely evenly distributed. After all, the USA apparently spends twice as much on pet grooming as it does on nuclear fusion research. Incidentally, isn't this bizarre in itself: it's not just that we consider ourselves so much more rational than all other animals, but that the human brain is the most complex object in the known universe. That's a pretty scary thought!

As for Mary Shelley's classic novel whose title is evoked during criticism of GM foods, she may have been inspired by the general feeling of doom then in the air; almost literally in fact, due to the 1815 eruption of Mount Tambora, with volcanic dust creating 1816's 'Year without a Summer'. As an aside, the astonishingly lurid colours of J.M.W. Turner's sunsets of the period were another artistic response associated with the high-altitude volcanic aerosols.

In addition to the extremely cold, wet conditions of that year, Shelley is thought to have stopped near to the original Frankenstein Castle in Germany, where alchemy and other dubious dark arts were reputed to have been practiced. Combined with Luigi Galvani's experiments on frogs' legs - originally performed several decades earlier but much imitated still in Shelley's time, including on human cadavers - the novel is clearly a reflection of widespread anxieties of the time.

With the expansion of industrial cities and their associated squalor, the mid-Nineteenth Century saw the origin of philosophies that associated technological advances (and their scientific underpinnings) with a debasement of humanity. William Blake's description of 'satanic mills' epitomises this mode of thought, seen in as diverse a range of expression as the Pre-Raphaelite Brotherhood of artists, the Arts and Crafts movement, even the political writings of Marx and Engels. To blame the greed of the new captains of industry on science is obviously unfair, but then the latter were a far easier target. After all, the English chemist and political radical Joseph Priestley fled to the United States after an authority-sponsored mob burnt down his house in 1791.

Blake's over-wraught emoting ("Science is the Tree of Death") is amongst the strongest negativity of the period, but can we blame him, considering science was, as it is today, often wrongly blamed as the root cause of the widespread destruction of nature to make way for a soulless, artificial environment? But it wasn't just a response to the changes to society and landscape that Blake took exception to: he detested the mechanistic vision of the universe built upon the work of Galileo and Newton, believing that too much knowledge destroyed wonder and awe.

This is clearly as subjective a viewpoint as any discussion of a work of art; it can be easily rebuffed, although the attitude behind it should be treated seriously. Happily, today's plethora of glossy coffee table books on such scientifically-gleaned wonders as Hubble Space Telescope imagery show there is still plenty to be in awe of.

Mainstream cinema frequently paints a very A versus B picture of the world (think classic westerns or war films). But science can rarely fit into such neat parcels: consider how the more accurate general theory of relativity can live alongside its predecessor from Newton. In addition, it's very tricky to make interesting drama within a traditional narrative structure that utilises scientist protagonists unless it's a disaster movie (even the likes of Jurassic Park falls within this category.)

It isn't difficult to recall many negative examples of scientists in Hollywood movies, from at best those too wrapped up in their own work to notice its wider effects, to at worst insane megalomaniacs intent on either world domination or destruction. In contrast, how many sympathetic movie scientists are there?

It seems such a shame that such a ubiquitous form of entertainment consistently portrays such a lack of sympathy towards science. Even the film version of Carl Sagan's novel Contact lacked the cosmic spiritual elements of the source material, as if afraid that a combination of astrophysics and the mystical wouldn't be comprehensible to audiences (2001 syndrome, perhaps?) Science fiction films these days often seem keen to boast of their technical consultants, so what about a more sympathetic attitude to the practitioners of science itself? After all, most scientists don't live with their private armies in secret headquarters bases, planning to takeover the world...