Showing posts with label Amazonian rainforest. Show all posts
Showing posts with label Amazonian rainforest. Show all posts

Monday, 24 August 2020

Fundamental fungi: the forgotten kingdom vital to our future

At the end of 1993 the Convention on Biological Diversity came into force. A key piece of global legislation in the promotion of sustainable development, it marked a change in focus for environmental concerns. Whereas previous high-profile conservation efforts such as those of the World Wide Fund for Nature or Greenpeace were frequently aimed at individual species or regional ecosystems, the legislation initiated by the 1992 Earth Summit in Rio de Janeiro was aimed at the biota of the entire planet. However, there are still segments of enormous ecological importance that are lacking sufficient research.

I've previously discussed how little attention general-readership natural history pays to the kingdom of fungi, which may have somewhere between 1.5 million and 3.8 million species. Of these, less than 150,000 have been scientifically described. Clearly, this is one life form where our knowledge barely covers the tip of the iceberg. It's hardly as if this attitude is a new one, either. While Linnaeus produced comprehensive editions on plant and animal taxonomy in the 1750s, it took over seventy years for anyone to bother with fungi: it wasn't until 1821 that another Swedish naturalist, Elias Magnus Fries, produced an equivalent work called Systema Mycologicum.

Thanks to the majority of fungal material living either underground or in dark, damp environments such as leaf litter, the kingdom fails to get the attention it deserves. Even the forms we see more regularly, such as mushrooms and symbiotic lichen, engender little interest. Many people no doubt still mistake the former as plants - and are scared off any interest in the wild forms due to the dangers of poisonous species - while the latter are rarer in polluted, i.e. urban, environments and fail to compete in sight and scent with the glories of the flowering plants.

In the eight years since I wrote about the lack of interest in fungi, I've found reason to mention the long-forgotten kingdom in various important contexts. For a start, numerous animals and plants are becoming critically endangered due to fungal pathogens accidentally being spread by global travel. In addition, research over the past three years has shown that Aspergillus tubingensis and several other types of fungi show promise as a bio-friendly solution to plastic waste. Finally, last month I looked at non-animal protein substitutes, including the mycoprotein-derived Quorn.

Despite the potential of these various forms of fungi, the organism's losses due to rapid environmental changes don't appear to be garnering much attention. The IUCN Red List, which tabulates the differing levels of threat faced by all life on Earth, only shows 343 fungi as currently endangered; this contrasts with over 43,000 plants and 76,000 animals on the list. Undoubtedly, the Kingdom Fungi is being given an underwhelming amount of attention just as we are discovering how important it is to maintaining ecosystem stability and for the future of our species.

Recently published reports of studies conducted in the Amazon region show that deforestation has a long-term impact on soil biota, which in turn affects the entire local ecology. Studies of a range of habitats, such as primary forest, agricultural land (including monoculture), pasture/grazing, forestry plantations and secondary/regenerated forest showed that although overall fungal mass might remain consistent, species diversity is far lower outside of the original rainforest. The lack of fungal variety was linked directly to the lack of plant diversity in those biomes, with recovery a slow or unlikely prospect due to the newly-fragmented nature of the landscape preventing efficient dispersal of fungal spores.

There are some obvious points that agribusiness seems to ignore, such as the effects of pesticides and fertilisers on local fungi and the loss of microhabitats vital to maintaining a healthy variety of fungal species. If only more generalist fungi can survive the change in land use from the wonderful diversity of the rainforest (with up to 400 fungal species per teaspoonful) then this may have repercussions for future farming. As an example, the fungus Fusarium oxysporum has a phytopathogenic effect on agricultural plants including palm oil, but without competition from a wider cross-section of fungi (for example, Paraconiothyrium variabile) it could spread rapidly within a dismal monoculture environment. 

As a predominantly visual species, we humans are unthinkingly biased about the natural world based upon what we see: think cute giant panda versus the unappealing aesthetics of the blobfish. It really is a case of out of sight, out of mind, but unfortunately no amount of spin doctoring will make fungi as much loved as furry mammals. Yet our attitudes need to change if we are to maintain the delicate ecological balance; fungi are highly important for recycling nutrients, regulating carbon dioxide levels, and as a source of food and pharmaceuticals. Yet they remain the soil equivalents of the ubiquitous underwater copepods, unsung heroes of the global ecosystem. It's about time we took a lot more notice of this forgotten kingdom.

Saturday, 10 June 2017

Owning the aliens: who should support endangered species thriving outside their home territories?

On holiday in Fiji last year I was surprised to learn that the most commonly-seen animals - with the exception of flying foxes - were recent introductions from other countries, primarily India. Examples include the red-vented bulbul, mynah bird, house gecko, and mongoose, all of which have brought their own problems to either native wildlife or Fijian agriculture.

From Hawaii to New Zealand, the deliberate or accidental introduction of non-native animals, plants and fungi has had profoundly negative effects on these previously isolated ecosystems. So what happens if an introduced organism, especially one that has a deleterious effect on wildlife, thrives in its transplanted habitat whilst becoming endangered across its original range? Two questions spring to mind: should the adopted homeland be able to exterminate the alien invader with impunity; and/or should the country of origin fund work in the invaded nation during a 'lifeboat' phase, until the home turf is suitable for restocking?

Almost inevitably, the countries with the highest number of at-risk species tend to be the poorer ones, Australia and the United States excepted. Reports over the past four years list a variety of nations with this sorry state of affairs, but amongst different conservation groups those within the top ten for endangered animal species include Indonesia, Malaysia, Ecuador, Mexico, India and Brazil. In some of these there is little political willpower - or indeed funding - to support anything deemed non-critical, with biodiversity seen as a nice-to-have.

For small nations such as Fiji there is little in the way of an environmental lobby. NatureFiji-MareqetiViti is an organisation that attempts to safeguard such threatened animals as the Fijian Crested Iguana whilst enhancing regional biosecurity, but with grants - including from the European Union - rarely exceeding a few tens or hundreds of thousands Fijian dollars they are woefully underfunded.

Which brings us to New Zealand, with its collection of endangered birds, lizards, freshwater fish and the Maui dolphin. In addition to Department of Conservation (Doc) budget cuts over the past decade - claimed by some organisations to total a 21% decline in real terms - the nation is home to several Australian animals that are nationally vulnerable in their native homeland across the Tasman Sea.

The green and golden bell frog (Litoria aurea) is a prime example of this, with a rapidly reducing Australian range having generated a status of 'globally vulnerable' yet being common enough in the northern part of New Zealand's North Island. I found this specimen at Auckland's Botanic Gardens earlier this year.


Therefore should the Australian Government fund a captive breeding programme - or simply a round-up - of individuals in New Zealand? After all, the latter has its own four native frog species, all rare and/or endangered, for its herpetologists to concentrate on.

There is a precedent for this. In 2003, three Australian trappers captured rare brush-tailed rock-wallabies on New Zealand's Kawau Island, where the marsupial's 'noxious' pest status meant
they were about to be targeted for eradication. The project included support from DoC but presumably - it's difficult to ascertain - the funding came from Australia.

Of course Australia may be able to afford to engage in restocking programmes abroad, but few other nations are in the same position. Although the largest conservation organisation in the world, the World Wide Fund for Nature (World Wildlife Fund in North America) has a comparatively large budget, even it cannot afford to support every repatriation or gene pool nursery scheme. Meanwhile, local charities such as NatureFiji-MareqetiViti tend to rely on volunteers rather than trained professionals and don't have the scope or capability for logistically-complex international undertakings.

With the USA becoming increasingly insular and Europe consumed with its own woes, the potential funding sources for these interim lifeboats is rapidly drying up. There are a few eco-angels, such as Norway's US$1 billion donation to Brazil - intended to curtail Amazonian rainforest destruction - but they are few and far between. It's one thing to support in-situ environmental issues, but another to raise funds to save selected endangered species thriving away from their native ecosystem.

It appears that there is no single solution to this, meaning that except for a few lucky 'poster' cases, many at-risk species may well fail to gain attention and be allowed to die out (or even be exterminated as foreign pests). The original home territory might no longer contain a suitable environment for them to thrive in whilst the foster nation lacks the impetus or funding to look after those pesky alien invaders. It seems that there are difficult times ahead!

Saturday, 26 December 2015

Beetlemania: can eating insects help save the environment?

Christmas - along with Thanksgiving for Americans - has probably got to be the most obvious time of the year when Westerners over-indulge in animal protein. However, this meatfest comes at a severe cost to the planet, as anyone who is environmentally aware is likely to know. Although many people have started making changes to mitigate climate change and pollution, compared to say recycling and reducing your carbon footprint, cutting down on meat seems to be far more challenging.

Actor and former California Governor Arnold Schwarzenegger has suggested Americans should have one or two meat-free days each week, but that's easier said than done in a continent raised on heaped platefuls of red meat. It isn't as if switching from cattle, sheep and goat to more unusual species would help either, as recent research confirms the likes of kangaroo and reindeer as sources of high methane emissions too. As a side note, it isn't just meat consumption that needs to be reduced; there's also dairy farming to consider. Does anyone really like soya milk? Mind you, I haven't tried almond milk yet...

United Nations reports suggest that greenhouse gas emissions from farming, primarily due to livestock and artificial fertilisers, have almost doubled in the past half century. As you might expect,these are likely to continue increasing at a similar rate over the next fifty years. In addition, vast tracts of Amazonian rainforest - amongst other unspoilt natural habitats - are being destroyed to make way for cattle grazing. At around three million acres lost each year, there's obviously not much in the way of sustainability about this particular development!

So is there any good news in all this culinary doom and gloom? Both Europe and especially North America have recently seen a profusion of companies marketing manufactured foods intended as meat replacements that are derived from of all things…insects. These products range from burgers to crackers and usually offer little appearance or taste to indicate their source material. Is it possible that the future for developed nations could include the delights of grasshopper goulash and wormicelli pasta?

It isn't as strange as it sounds. Over a quarter of mankind routinely eats insects from several thousand species as part of their traditional diet, usually with the source animal obvious in the presentation. This makes sense for developing nations, since wild insects can be caught en masse, farmed bugs fed on cheap waste material that can't be converted into conventional animal feed - and of course they require comparatively little water. Although the material isn't being converted to highly processed foodstuffs, Thailand - with over 20,000 insect farms - is an example of a nation currently increasing its insect consumption.

The species used in the new ‘hidden' insect foods varies widely, with crickets prominent on the menu. It isn't as straightforward as just killing the wee beasties and grinding them into powder, but many of the new American and European companies are conducting extensive research, developing mechanised processes that bode well for industrial-scale production.

The nutritional analysis shows promise to say the least, with some Hymenoptera species containing up to three times the protein yield of domestic cattle. The vitamin and mineral statistics are pretty good too, sometimes exceeding both farmed mammals and birds as well as plant staples such as soya beans. Not bad, considering that bug farming should prove to be at least four times as efficient as cattle husbandry.

Whether a trendy novelty can become mainstream remains to be seen, since the fledgling industry faces more than just the ‘yuck' factor. As with much cutting-edge technology, legislation has yet to catch up: there could be issues around safety concerns, with short shelf life, uncaught impurities or pollutants and allergic reactions all potential factors that could inhibit widescale production.

Bug protein isn't the only dish on the table (see what I did there?) as there are even more sophisticated approaches to reducing the environmental degradation caused by meat production. One well-publicised technique has been the cultivation of animal flesh in-vitro. However, it's only been a couple of years since the (nurturing? propagation?) of the first petri dish burger and so the process is still prohibitively expensive. By comparison, insects (bees and butterflies excepted) are not currently in short supply.

As a someone who hasn't eaten any land-based flesh for over a quarter of a century - and yes, I try to be careful with which aquatic species I consume - I suppose I have a fairly objective opinion about this matter. It does seem to make environmental sense to pursue processed insect protein as a replacement for domesticated mammal and bird species, but how often has logic taken a backseat to prejudice and the irrational? I look forward to near future developments, not least the massive brand campaigns that will no doubt be required to convert the Western public to the likes of Cricket crackers and Wormer schnitzel. Look out turkeys, your Christmases could be numbered...