Showing posts with label IUCN. Show all posts
Showing posts with label IUCN. Show all posts

Thursday, 24 September 2020

Dangerous cargo: the accidental spread of alien organisms via commercial shipping

It's often said that whichever culture and environment we grow up in is the one we consider as the norm. Whilst my great-grandparents were born before the invention of heavier-than-air flying machines, I've booked numerous long-haul flights without considering much beyond their monetary and environmental cost. Yet this familiarity with our fast and efficient global transportation network masks an unpleasant side effect: it is second only to habitat loss when it comes to endangering biodiversity.

Although many environmental campaigns focus on fossil fuels, deforestation and unsustainable agricultural practices, the (mostly inadvertent) transportation of alien plants, animals and fungi from one region to another has quietly but catastrophically reduced biodiversity in many areas of the planet.

The earliest example I recall learning about was Stephen Jay Gould's heart-felt description of the extinction of French Polynesia's partulid tree snails at the hands of introduced carnivorous snails intended to control edible snail species (which were also deliberately introduced). While the nineteenth and early twentieth centuries saw large numbers of species intentionally established in areas far from their natural territories, the past half century has seen an acceleration in equally disastrous accidental introductions as a by-product of international trade.

A potential starting point for invasion ecology as a discipline in its own right was Oxford professor Charles Elton's 1958 publication The Ecology of Invasions by Animals and Plants. The International Union for Conservation of Nature's Red List of Threatened Species followed six years later. Clearly, the negative effects of our activities were starting to become known. But has enough been done to publicise it in the intervening decades?

The Red list is the most accurate data source for regional biodiversity and the population health of all organisms known to science; yet few non-specialists seem even aware of its existence. Indeed, several decades passed after the list's creation before invasive biology became an important subject in professional ecology. Over the past thirty years the topic has seen a ten-fold increase in publications and citations - a sign of recognition if ever there was one - although mainstream media appears barely aware of its existence.

The IUCN's Invasive Species Specialist Group aids governments and organisations in planning the monitoring, containment, and where possible, destruction of invasive species. It runs the publicly-available Global Invasive Species Database, but its online presence appears to be poorly funded, or at least coordinated. Rather than a central hub there is a plethora of websites featuring varying degrees of professionalism and some distinctly out-of-date content. Perhaps clients are given direct instructions, but as a member of the public I found the ISSG sites bewildering in their variety.

Needless to say, when it does come to taking action, it can be assumed that economic imperatives such as agricultural pests take precedence over preservation of other endangered species. The only country I know of that is attempting a nation-wide eradication of most invasive animals (note: not plants and fungi) is New Zealand, with our Predator Free 2050 project. However, I'm uncertain how realistic it is. Even pre-Covid it appears to have lacked a solid funding source and now - with thirty years and counting until the deadline - there's even less chance of a comprehensive removal of numerous pest species.

What the Predator Free 2050 plan doesn't include is the multitude of plants and animals that slip through the net, so to speak: the legion of species currently invading our offshore environment. It's one thing to actually see land-based plants and animals, but the ocean is largely unknown territory to most people. With over forty thousand cargo vessels moving around the globe every year there is plenty of opportunity for organisms, especially their larval forms, to be inadvertently spread to new territories via both hulls and ballast water. Whilst Killer Algae (a slight hint there in the common name for Caulerpa taxifolia) and the Chinese mitten crab aren't as well-known as Japanese knotweed and Common myna bird they are just two of the many dangerous invaders spreading ever further from their original territories.

It isn't just marine vessels that can carry such dangerous cargo: the immense amount of plastic waste in our oceans can serve as life rafts for the propagation of alien species, albeit at the whim of currents moving rather slower than diesel power. The problem of course is that the oceans are enormous and so the only time the issue becomes known about is when an invasive organism is spotted encroaching in coastal waters. Unfortunately, marine lifeforms can't be easily dealt with using the traps and poison that work on land-based entities; indeed, international regulations seem as much concerned with the dangers of anti-fouling systems as with the issues they prevent.

In 2011 the International Maritime Organization implemented guidelines to minimise vessel biofouling as it relates to the accidental incursions of invasive marine organisms. New Zealand was the first of several nations to execute their own national strategy that turned these guidelines into mandatory practice - and take them further. In addition, New Zealand's National Institute of Water and Atmospheric Research (NIWA) runs annual surveys, particularly around ports, but otherwise their funding appears inadequate to the immensity of the task. 

It's all very well keeping track of the ever-increasing list of resident invasive species around the nation's coastline, but little has been done to remove them. With about 150 types of alien organism now in residence around New Zealand's coast and the same again in occasional visitors, NIWA has been a partner in international competitions aimed at finding pest management solutions, at least for coastal ecosystems if not the deep ocean. Obvious solutions such as scrubbing hulls would just lead to direct contamination of ports, so some new thinking is clearly required.

Of course, the use of cargo ships is unlikely to reduce any time soon. Our global marine transport network is far from in decline and many nations lack the stringent precautions that New Zealand and Australia are now implementing. It has been estimated that cleaning hulls to prevent biofouling could reduce global marine fuel consumption by 10%, so perhaps this commercial benefit may win over those reluctant to spend heavily on prevention measures. But just as fishing vessels are still getting away with immense amounts of by-kill, merchant shipping in many areas of the world appears to be a law unto self.

Preserving regional marine biota is just as critical as land-based environmental protection. Allowing species to proliferate outside their normal range can only lead to deleterious changes - and when combined with our warming, increasingly acidic oceans, this does not bode well for all life on Earth, especially a hungry Homo sapiens. Just because we humans spend most of our time on land, we cannot afford to ignore the far larger ecosystems of the seas.

Monday, 24 August 2020

Fundamental fungi: the forgotten kingdom vital to our future

At the end of 1993 the Convention on Biological Diversity came into force. A key piece of global legislation in the promotion of sustainable development, it marked a change in focus for environmental concerns. Whereas previous high-profile conservation efforts such as those of the World Wide Fund for Nature or Greenpeace were frequently aimed at individual species or regional ecosystems, the legislation initiated by the 1992 Earth Summit in Rio de Janeiro was aimed at the biota of the entire planet. However, there are still segments of enormous ecological importance that are lacking sufficient research.

I've previously discussed how little attention general-readership natural history pays to the kingdom of fungi, which may have somewhere between 1.5 million and 3.8 million species. Of these, less than 150,000 have been scientifically described. Clearly, this is one life form where our knowledge barely covers the tip of the iceberg. It's hardly as if this attitude is a new one, either. While Linnaeus produced comprehensive editions on plant and animal taxonomy in the 1750s, it took over seventy years for anyone to bother with fungi: it wasn't until 1821 that another Swedish naturalist, Elias Magnus Fries, produced an equivalent work called Systema Mycologicum.

Thanks to the majority of fungal material living either underground or in dark, damp environments such as leaf litter, the kingdom fails to get the attention it deserves. Even the forms we see more regularly, such as mushrooms and symbiotic lichen, engender little interest. Many people no doubt still mistake the former as plants - and are scared off any interest in the wild forms due to the dangers of poisonous species - while the latter are rarer in polluted, i.e. urban, environments and fail to compete in sight and scent with the glories of the flowering plants.

In the eight years since I wrote about the lack of interest in fungi, I've found reason to mention the long-forgotten kingdom in various important contexts. For a start, numerous animals and plants are becoming critically endangered due to fungal pathogens accidentally being spread by global travel. In addition, research over the past three years has shown that Aspergillus tubingensis and several other types of fungi show promise as a bio-friendly solution to plastic waste. Finally, last month I looked at non-animal protein substitutes, including the mycoprotein-derived Quorn.

Despite the potential of these various forms of fungi, the organism's losses due to rapid environmental changes don't appear to be garnering much attention. The IUCN Red List, which tabulates the differing levels of threat faced by all life on Earth, only shows 343 fungi as currently endangered; this contrasts with over 43,000 plants and 76,000 animals on the list. Undoubtedly, the Kingdom Fungi is being given an underwhelming amount of attention just as we are discovering how important it is to maintaining ecosystem stability and for the future of our species.

Recently published reports of studies conducted in the Amazon region show that deforestation has a long-term impact on soil biota, which in turn affects the entire local ecology. Studies of a range of habitats, such as primary forest, agricultural land (including monoculture), pasture/grazing, forestry plantations and secondary/regenerated forest showed that although overall fungal mass might remain consistent, species diversity is far lower outside of the original rainforest. The lack of fungal variety was linked directly to the lack of plant diversity in those biomes, with recovery a slow or unlikely prospect due to the newly-fragmented nature of the landscape preventing efficient dispersal of fungal spores.

There are some obvious points that agribusiness seems to ignore, such as the effects of pesticides and fertilisers on local fungi and the loss of microhabitats vital to maintaining a healthy variety of fungal species. If only more generalist fungi can survive the change in land use from the wonderful diversity of the rainforest (with up to 400 fungal species per teaspoonful) then this may have repercussions for future farming. As an example, the fungus Fusarium oxysporum has a phytopathogenic effect on agricultural plants including palm oil, but without competition from a wider cross-section of fungi (for example, Paraconiothyrium variabile) it could spread rapidly within a dismal monoculture environment. 

As a predominantly visual species, we humans are unthinkingly biased about the natural world based upon what we see: think cute giant panda versus the unappealing aesthetics of the blobfish. It really is a case of out of sight, out of mind, but unfortunately no amount of spin doctoring will make fungi as much loved as furry mammals. Yet our attitudes need to change if we are to maintain the delicate ecological balance; fungi are highly important for recycling nutrients, regulating carbon dioxide levels, and as a source of food and pharmaceuticals. Yet they remain the soil equivalents of the ubiquitous underwater copepods, unsung heroes of the global ecosystem. It's about time we took a lot more notice of this forgotten kingdom.

Wednesday, 15 February 2017

Backyard bonanza: collating stats for a predator-free future

I've previously discussed how a lack of understanding of statistics can cause consumers to make poor choices, so it would seem that increasing the public's understanding of them can only be a good thing. Therefore, along the lines of New Zealand's annual garden bird survey, I decided to do a bit of citizen science. My aim was to record the highest number of each fauna species seen at one time, either actually in my garden or seen from my garden. The time frame was a calendar year, so as to take into account seasonal migrations and food availability. As an aside, it might have been easier to count flora (after all, it doesn't move very fast) but with Auckland being the weediest city in the world and my floral knowledge much weaker than my recognition of fauna, I opted for the easier option of any animal that I could see without using a microscope.

A meta-analysis released this month states that almost twenty-five percent of birds on the IUCN Red List of Threatened Species are being affected by climate change. In addition, with last years' announcement to make New Zealand predator-free by 2050, such surveys might be useful for locating concentrations of introduced pest species. In a way, I'm providing a guide that anyone can follow with the minimum of effort (hint, hint). So here are my results, followed by some more information:


Class/species Native/self-introduced Number seen
Insecta
Ant (unknown species) Yes Numerous
Asian paper wasp No 3
Black field cricket Yes 4
Bumble bee No 1
Bush cockroach Yes 14
Cabbage tree moth Yes 7
Cabbage white butterfly No 2
Cicada Yes 2
Click beetle Yes 2
Common bag moth Yes 1
Crane fly Yes 1
European earwig No 1
Ground beetle Yes 2
Honey bee No 1
Housefly No 7
Ladybird Yes 2
Monarch butterfly Yes 17
Shield bug Yes 3
South African praying mantis No 22
Tree weta Yes 18
Arachnida
Bird dropping spider Yes 1
Black cobweb spider Yes 1
Black house spider Yes 1
Daddy long-legs Yes 3
Jumping spider Yes 1
Nurseryweb spider Yes 1
Slater spider Yes 1
White tail spider No 1
Annelida
Earthworm No 5
Tiger worm No Numerous
Hexapoda
Springtail No Numerous
Chilopoda
Centipede Yes 3
Mollusca
Common garden snail No 9
Reptilia
Rainbow skink No 2
Aves
Australasian hawk Yes 1
Blackbird No 2
Black headed gull Yes 3
Eastern rosella No 4
Fantail Yes 2
Goldfinch No 3
Greenfinch No 2
House sparrow No 14
Myna bird No 4
Rock pigeon No 5
Silvereye Yes 7
Song thrush No 1
Spotted dove No 1
Starling No 4
Tui Yes 1
Mammalia
Cat No 2
Chicken No 1
Dog No 1
Hedgehog No 1
Mouse No 1
Rabbit No 1


The first thing that seems obvious is just how many non-native species I observed, some deliberate introductions whilst others accidentally brought to New Zealand, but all within the past two centuries.

Now for some interesting comments about how statistics can be (mis)interpreted:

1) The method I chose to order the table by could affect how easy it is to find key points of interest. Alphabetical order is familiar but is simply a well-known form of cataloging. Therefore it can be seen as a neutral form of presentation, not emphasising any particular pattern of the results. Had I ordered by native/non-native, it might have become more apparent how many of the latter bird species there are. If I had ordered all species in one list by this method, rather than in separate classes, the pattern would have been obscured again. So simply by selecting a certain order, results can appear to support a certain notion.

2) How useful is this data if it lacks supporting information? By this, I mean factors that might affect the count: Is it a common or garden (yes, that's a pun) location or an highly unusual one? Is the locale urban or rural? What are the surroundings? How big is the garden and how much vegetation is there? Is the vegetation primarily native or non-native? I could go on like for this ages, but clearly to get a more sophisticated understanding of the causes behind the figures, this information is necessary. Even then, two locations that are almost identical to a casual observer might appear profoundly different from the vantage point of say, earthworms. I will admit to (a) having built 2 weta motels and a bug motel; and (b) feeding silvereyes in winter; and (c) having made a tui sugar water feeder that has been totally ignored. Go figure!

3) Are there any other obvious factors that could affect wildlife? How managed is the location? Are chemicals such as weedkiller used or is the garden solely organic? Again, this can have a massive effect on wildlife, such as pesticides that remove insects at the base of food webs. On the one hand, if mine is an organic garden surrounding by neighbours who spray their foliage, then it could be an island of suitability in a comparatively barren terrain. But alternatively, if most of the neighbourhood isn't fauna-friendly, how likely would my garden get visited even on the off-chance by animals that can't live in the wider area?

4) Of course there's also contingency within natural selection. For example, quite by chance some species can survive on foods not native to their ecosystem. Although stick insect numbers in New Zealand were drastically reduced thanks to DDT, gardens don't need to contain their native food plants in order to support them. In the south-west of England, three species of accidentally-introduced New Zealand stick insect have flourished for decades on the likes of roses! Also, unusual events can affect populations: in this case, the two rainbow skinks appeared several months' after laying some ready lawn so I can only assume their eggs arrived with the turf, the previous five years having seen no skinks whatsoever.

5) When it comes to surveys, timing is also important. As you might expect, most of my observations took place during the day, with the only nocturnal ventures being on clear nights when using my telescope. The moths and hedgehogs were mostly seen at night, whilst had I included birds I could hear as well as see, then a morepork would have been added to the list. Again a simple prejudice, in this case sight over sound, has skewed the statistics. The large number of mantises were not adults but nymphs all hatching from a single ootheca. As for the monarch butterflies, they were a combination of caterpillars, chrysalis and adults, having appeared in much greater numbers this year than previous, despite no additional swan plants (their only food). Interesting, a clump of twenty or so mature swan plants a few streets away hasn't yielded any monarchs in any of the three stages. Presumably, predators such as wasps are responsible.

The sheer randomness of nature is exciting, but doesn't exactly help to uncover why populations are such as they are found via small-scale studies. Oh, and further to the damage invasive species have wrought on native wildlife, you may be interested to learn that none of the mammals belonged to me, the cats and dog being owned by friends and neighbours whilst the rabbit was an escapee from a dozen houses away!

6) Finally, there's the scale prejudice. Although I have a basic microscope, I didn't include such tiny wonders as tardigrades and bdelloid rotifers, even though garden moss and leaf litter respectively has revealed these wee critters. My page of nature photographs shows this prejudice, with microscopic fauna getting their own page.

So, what can we learn from this, apart from the large number of non-native species commonly found in Auckland? Perhaps that raw data can be presented in ways to obscure patterns or suggest others, should the publisher have an agenda. Furthermore, without access to highly detailed meta data, the statistics by themselves tell only a small part of the story and as such are open to wide-ranging interpretation by the reader. Therefore the next time you read about some percentage or other, remember that even without manipulation or omission, survey data is not necessarily pure, unsullied and free of bias.