Showing posts with label DDT. Show all posts
Showing posts with label DDT. Show all posts

Tuesday 27 October 2020

Bursting the bubble: how outside influences affect scientific research

In these dark times, when some moron (sorry, non-believer in scientific evidence) can easily reach large numbers of people on social media with their conspiracy theories and pseudoscientific nonsense, I thought it would be an apt moment to look at the sort of issues that block the initiation, development and acceptance of new scientific ideas. We are all aware of the long-term feud between some religions and science but aside from that, what else can influence or inhibit both theoretical and applied scientific research?

There are plenty of other factors, from simple national pride to the ideologies of the far left and right that have prohibited theories considered inappropriate. Even some of the greatest twentieth century scientists faced persecution; Einstein was one of the many whose papers were destroyed by the Nazis simply for falling under the banner 'Jewish science'. At least this particular form of state-selective science was relatively short-lived: in the Soviet Union, theories deemed counter to dialectical materialism were banned for many decades. A classic example of this was Stalin's promotion of the crackpot biologist Trofim Lysenko - who denied the modern evolutionary synthesis - and whose scientific opponents were ruthlessly persecuted. 

Even in countries with freedom of speech, if there is a general perception that a particular area of research has negative connotations then no matter how unfounded, public funding may be affected likewise. From the seemingly high-profile adulation of STEM in the 1950s and 1960s (ironic, considering the threat of nuclear war), subsequent decades have seen a decreasing trust in both science and its practitioners. For example, the Ig Nobel awards have for almost thirty years been a high-profile way of publicising scientific projects deemed frivolous or a waste of resources. A similar attitude is frequently heard in arts graduate-led mainstream media; earlier this month, a BBC radio topical news comedy complemented a science venture that was seen as "doing something useful for once." 

Of course, this attitude is commonly related to how research is funded, the primary question being why should large amounts of resources go to keep STEM professionals employed if their work fails to generate anything of immediate use? I've previously discussed this contentious issue, and despite the successes of the Large Hadron Collider and Laser Interferometer Gravitational-Wave Observatory, there are valid arguments in favour of them being postponed until our species has dealt with fundamental issues such as climate change mitigation. 

There are plenty of far less grandiose projects that could benefit from even a few percent of the resources given to the international, mega-budget collaborations that gain the majority of headlines. Counter to the 'good science but wrong time' argument is the serendipitous nature of research; many unforeseen inventions and discoveries have been made by chance, with few predictions hitting the mark.

The celebrity-fixated media tends to skew the public's perception of scientists, representing them more often as solitary geniuses rather than team players. This has led to oversimplified distortions, such as that inflicted on Stephen Hawking for the last few decades of his life. Hawking was treated as a wise oracle on all sorts of science- and future-related questions, some far from his field of expertise. This does neither the individuals involved nor the scientific enterprise any favours. It makes it appear as if a mastermind can pull rabbits out of a hat, rather than hardworking groups spending years on slow, methodical and - let's face it - from the outsider's viewpoint what appears to be somewhat dull research. 

The old-school caricature of the wild-haired, lab-coated boffin is thankfully no longer in evidence, but there are still plenty of popular misconceptions that even dedicated STEM media channels don't appear to have removed. For example, almost everyone I meet fails to differentiate between the science of palaeontology and the non-science of archaeology, the former of course usually being solely associated with dinosaurs. If I had to condense the popular media approach to science, it might be something along these lines:

  • Physics (including astronomy). Big budget and difficult to understand, but sometimes exciting and inspiring
  • Chemistry. Dull but necessary, focusing on improving products from food to pharmaceuticals
  • Biology (usually excluding conventional medicine). Possibly dangerous, both to human ego and our ethical and moral compass (involve religion at this point if you want to) due to both working theories (e.g. natural selection) and practical applications, such as stem cell research. 

Talking of applied science, a more insidious form of pressure has sometimes been used by industry, either to keep consumers purchasing their products or prevent them moving to rival brands. Various patents, such as for longer-lasting products, have been snapped up and hidden by companies protecting their interests, while the treatment meted out to scientific whistle blowers has been legendary. Prominent examples include Rachel Carson's expose of DDT, which led to attacks on her credibility, to industry lobbying of governments to prevent the banning of CFCs after they were found to be destroying the ozone layer.

When the might of commerce is combined with wishful thinking by the scientist involved, it can lead to dreadful consequences. Despite a gathering body of evidence for smoking-related illnesses, the geneticist and tobacco industry spokesman Ronald Fisher - himself a keen pipe smoker - argued for a more complex relationship between nicotine and lung disease. The sector used his prominence to denigrate the truth, no doubt shortening the lives of immense numbers of smokers.

If there's a moral to all this, it is that even at a purely theoretical level science cannot be isolated from all manner of activities and concerns. Next month I'll investigate negative factors within science itself that have had deleterious effects on this uniquely human sphere of accomplishment.

Wednesday 15 February 2017

Backyard bonanza: collating stats for a predator-free future

I've previously discussed how a lack of understanding of statistics can cause consumers to make poor choices, so it would seem that increasing the public's understanding of them can only be a good thing. Therefore, along the lines of New Zealand's annual garden bird survey, I decided to do a bit of citizen science. My aim was to record the highest number of each fauna species seen at one time, either actually in my garden or seen from my garden. The time frame was a calendar year, so as to take into account seasonal migrations and food availability. As an aside, it might have been easier to count flora (after all, it doesn't move very fast) but with Auckland being the weediest city in the world and my floral knowledge much weaker than my recognition of fauna, I opted for the easier option of any animal that I could see without using a microscope.

A meta-analysis released this month states that almost twenty-five percent of birds on the IUCN Red List of Threatened Species are being affected by climate change. In addition, with last years' announcement to make New Zealand predator-free by 2050, such surveys might be useful for locating concentrations of introduced pest species. In a way, I'm providing a guide that anyone can follow with the minimum of effort (hint, hint). So here are my results, followed by some more information:


Class/species Native/self-introduced Number seen
Insecta
Ant (unknown species) Yes Numerous
Asian paper wasp No 3
Black field cricket Yes 4
Bumble bee No 1
Bush cockroach Yes 14
Cabbage tree moth Yes 7
Cabbage white butterfly No 2
Cicada Yes 2
Click beetle Yes 2
Common bag moth Yes 1
Crane fly Yes 1
European earwig No 1
Ground beetle Yes 2
Honey bee No 1
Housefly No 7
Ladybird Yes 2
Monarch butterfly Yes 17
Shield bug Yes 3
South African praying mantis No 22
Tree weta Yes 18
Arachnida
Bird dropping spider Yes 1
Black cobweb spider Yes 1
Black house spider Yes 1
Daddy long-legs Yes 3
Jumping spider Yes 1
Nurseryweb spider Yes 1
Slater spider Yes 1
White tail spider No 1
Annelida
Earthworm No 5
Tiger worm No Numerous
Hexapoda
Springtail No Numerous
Chilopoda
Centipede Yes 3
Mollusca
Common garden snail No 9
Reptilia
Rainbow skink No 2
Aves
Australasian hawk Yes 1
Blackbird No 2
Black headed gull Yes 3
Eastern rosella No 4
Fantail Yes 2
Goldfinch No 3
Greenfinch No 2
House sparrow No 14
Myna bird No 4
Rock pigeon No 5
Silvereye Yes 7
Song thrush No 1
Spotted dove No 1
Starling No 4
Tui Yes 1
Mammalia
Cat No 2
Chicken No 1
Dog No 1
Hedgehog No 1
Mouse No 1
Rabbit No 1


The first thing that seems obvious is just how many non-native species I observed, some deliberate introductions whilst others accidentally brought to New Zealand, but all within the past two centuries.

Now for some interesting comments about how statistics can be (mis)interpreted:

1) The method I chose to order the table by could affect how easy it is to find key points of interest. Alphabetical order is familiar but is simply a well-known form of cataloging. Therefore it can be seen as a neutral form of presentation, not emphasising any particular pattern of the results. Had I ordered by native/non-native, it might have become more apparent how many of the latter bird species there are. If I had ordered all species in one list by this method, rather than in separate classes, the pattern would have been obscured again. So simply by selecting a certain order, results can appear to support a certain notion.

2) How useful is this data if it lacks supporting information? By this, I mean factors that might affect the count: Is it a common or garden (yes, that's a pun) location or an highly unusual one? Is the locale urban or rural? What are the surroundings? How big is the garden and how much vegetation is there? Is the vegetation primarily native or non-native? I could go on like for this ages, but clearly to get a more sophisticated understanding of the causes behind the figures, this information is necessary. Even then, two locations that are almost identical to a casual observer might appear profoundly different from the vantage point of say, earthworms. I will admit to (a) having built 2 weta motels and a bug motel; and (b) feeding silvereyes in winter; and (c) having made a tui sugar water feeder that has been totally ignored. Go figure!

3) Are there any other obvious factors that could affect wildlife? How managed is the location? Are chemicals such as weedkiller used or is the garden solely organic? Again, this can have a massive effect on wildlife, such as pesticides that remove insects at the base of food webs. On the one hand, if mine is an organic garden surrounding by neighbours who spray their foliage, then it could be an island of suitability in a comparatively barren terrain. But alternatively, if most of the neighbourhood isn't fauna-friendly, how likely would my garden get visited even on the off-chance by animals that can't live in the wider area?

4) Of course there's also contingency within natural selection. For example, quite by chance some species can survive on foods not native to their ecosystem. Although stick insect numbers in New Zealand were drastically reduced thanks to DDT, gardens don't need to contain their native food plants in order to support them. In the south-west of England, three species of accidentally-introduced New Zealand stick insect have flourished for decades on the likes of roses! Also, unusual events can affect populations: in this case, the two rainbow skinks appeared several months' after laying some ready lawn so I can only assume their eggs arrived with the turf, the previous five years having seen no skinks whatsoever.

5) When it comes to surveys, timing is also important. As you might expect, most of my observations took place during the day, with the only nocturnal ventures being on clear nights when using my telescope. The moths and hedgehogs were mostly seen at night, whilst had I included birds I could hear as well as see, then a morepork would have been added to the list. Again a simple prejudice, in this case sight over sound, has skewed the statistics. The large number of mantises were not adults but nymphs all hatching from a single ootheca. As for the monarch butterflies, they were a combination of caterpillars, chrysalis and adults, having appeared in much greater numbers this year than previous, despite no additional swan plants (their only food). Interesting, a clump of twenty or so mature swan plants a few streets away hasn't yielded any monarchs in any of the three stages. Presumably, predators such as wasps are responsible.

The sheer randomness of nature is exciting, but doesn't exactly help to uncover why populations are such as they are found via small-scale studies. Oh, and further to the damage invasive species have wrought on native wildlife, you may be interested to learn that none of the mammals belonged to me, the cats and dog being owned by friends and neighbours whilst the rabbit was an escapee from a dozen houses away!

6) Finally, there's the scale prejudice. Although I have a basic microscope, I didn't include such tiny wonders as tardigrades and bdelloid rotifers, even though garden moss and leaf litter respectively has revealed these wee critters. My page of nature photographs shows this prejudice, with microscopic fauna getting their own page.

So, what can we learn from this, apart from the large number of non-native species commonly found in Auckland? Perhaps that raw data can be presented in ways to obscure patterns or suggest others, should the publisher have an agenda. Furthermore, without access to highly detailed meta data, the statistics by themselves tell only a small part of the story and as such are open to wide-ranging interpretation by the reader. Therefore the next time you read about some percentage or other, remember that even without manipulation or omission, survey data is not necessarily pure, unsullied and free of bias.

Friday 23 December 2016

O Come, All ye Fearful: 12 woes for Christmas future

This month I thought I would try and adopt something of the Yuletide spirit by offering something short and sharp (if not sweet) that bares a passing resemblance to the carol On the Twelve Days of Christmas. However, instead of gifts I'll be attempting to analyse twelve key concerns that humanity may face in the near future, some being more immediate - not to mention inevitable - than others.

I'll start off with the least probable issues then gradually work down to those most likely to have widespread effects during the next few decades. As it is meant to be a season of good cheer I'll even suggest a few solutions or mitigation strategies where these are applicable. The ultimate in low-carb gifts: what more could you ask for?

12: ET phones Earth. With the SETI Institute and Breakthrough Listen project leading efforts to pick up signals from alien civilisations, what are the chances that we might receive an extra-terrestrial broadcast in the near future? Although many people might deem this just so much science fiction, the contents of a translated message (or autonomous probe) could prove catastrophic. Whether it would spark faith-based wars or aid the development of advanced technology we couldn't control - or be morally fit enough to utilise - there may be as many negative issues as positive ones.

Solution: Keeping such information secret, especially the raw signal data, would be incredibly difficult. Whether an international translation project could be conducted in secret is another matter, with censorship allowing a regular trickle of the less controversial information into the public domain. Whilst this is the antithesis of good scientific practice, it could prove to be the best solution in the long term. Not that most politicians are ever able to see anything that way, however!

11. Acts of God. There is a multitude of naturally-occurring events that are outside of human control, both terrestrial (e.g. super volcano, tsunami) and extra-terrestrial, such as asteroid impacts. Again, until recently few people took much interest in the latter, although Hollywood generated some awareness via several rather poor movies in the late 1990s. The Chelyabinsk meteor of February 2013 (rather than meteorite, as most of the material exploded at altitude led to 1500 injuries, showing that even a small object that doesn't reach the ground intact can cause havoc. Since 2000, there have been over twenty asteroid impacts or atmospheric break-ups ranging from a kiloton up to half a megaton.

Solution: Although there are various projects to assess the orbits of near-Earth objects (NEOs), the development of technologies to deflect or destroy impactors requires much greater funding than is currently in place. Options range from devices that use just their velocity to knock NEOs off-course to the brute force approach of high-powered lasers and hydrogen bombs. However, with the cancellation of NASA's Ares V heavy launch vehicle it's difficult to see how such solutions could be delivered in time. Hopefully in the event something would be cobbled together pretty quickly!

10. Grey goo scenario. As defined by Eric Drexler in his 1986 book Engines of Creation, what if self-replicating nanobots (developed for example, for medical purposes), break their programming and escape into the world, eating everything in their path? Similar to locust swarms, they would only be limited by the availability of raw materials.

Solution: The Royal Society's 2004 report on nanoscience declared that the possibility of von Neumann machines are some decades away and therefore of little concern to regulators. Since then, other research has suggested there should be limited need to develop such machines anyway. So that's good to know!

9. Silicon-destroying lifeforms. What if natural mutations lead to biological organisms that can seriously damage integrated circuitry? A motherboard-eating microbe would be devastating, especially in the transport and medical sectors, never mind the resulting communication network outages and financial chaos. This might sound as ridiculous as any low-grade science fiction plot, but in 1975 nylon-eating bacteria were discovered. Since then, research into the most efficient methods to recover metals from waste electronics have led to experiments in bioleaching. As well as bacteria, the fungus Aspergillus niger has been shown to breakdown the metals used in circuits.

Solution: As bioleaching is potentially cheaper and less environmentally damaging it could become widespread. Therefore it will be up to the process developers to control their creations. Fingers crossed, then!

8. NCB. Conventional weapons may be more common place, but the development of nuclear, chemical and biological weapons by rogue states and terrorist organisations is definitely something to be worried about. The International Atomic Energy Agency has a difficult time keeping track of all the radioactive material that is stolen or goes missing each year.  As the 1995 fatal release of the nerve agent sarin on the Tokyo subway shows, terrorists are not unwilling to use weapons of mass destruction on the general public.

Solution: There's not much I can suggest here. Let's hope that the intelligence services can keep all the Dr Evils at bay.

7. Jurassic Park for real. At Harvard last year a chicken embryo's genes were tweaked in such a way as to create a distinctly dinosaurian snout rather than a beak. Although it may be sometime before pseudo-velociraptors are prowling (high-fenced) reserves, what if genome engineering was used to develop Homo superior? A 2014 paper from Michigan State University suggests both intellectual and physical improvements via CRISPR-cas9 technology is just around the corner.

Solution: If the tabloids are to be believed (as if) China will soon be editing human genomes, to fix genetic diseases as well as generating enhanced humans. Short of war, what's to stop them?

Planet Earth wrapped as a Christmas present

6. DIY weaponry. The explosion in 3D printers for the domestic market means that you can now make your own handguns. Although current designs wear out after a few firings, bullets are also being developed that will work without limiting their lifespan. Since many nations have far more stringent gun laws than the USA, an increase in weaponry among the general public is just what we don't need.

Solution: how about smart locking systems on printers so they cannot produce components that could be used to build a weapon? Alternatively, there are now 3D printer models that can manufacture prototype bulletproof clothing. Not that I'd deem that a perfect solution!

5. Chemical catastrophe. There are plenty of chemicals no longer in production that might affect humanity or our agriculture. These range from the legacy effects of polychlorinated biphenyl (PCB), a known carcinogen, to the ozone depletion causing by CFCs, which could be hanging around the stratosphere for another century; this doesn't just result in increased human skin cancer - crops are also affected by the increased UVB.

Solution: we can only hope that current chemical development now has more rigorous testing and government regulation than that accorded to PCBs, CFCs, DDTs, et al. Let's hope all that health and safety legislation pays off.

4. The energy crisis. Apart from the obvious environmental issues around fossil fuels, the use of fracking generates a whole host of problems on its own, such as the release of methane and contamination of groundwater by toxic chemicals, including radioactive materials.

Solution: more funding is required for alternatives, especially nuclear fusion (a notoriously expensive area to research). Iceland generated 100% of its electricity from renewables whilst Portugal managed 4 consecutive days in May this year via wind, hydro, biomass and solar energy sources. Greater recycling and more incentives for buying electric and hybrid vehicles wouldn't hurt either!

3. Forced migration. The rise in sea levels due to melt water means that it won't just be Venice and small Pacific nations that are likely to become submerged by the end of the century. Predictions vary widely, but all in the same direction: even an increase of 150mm would be likely to affect over ten million people in the USA alone, with probably five times that number in China facing similar issues.

Solution: a reduction in greenhouse gas emissions would seem to be the thing. This requires more electric vehicles and less methane-generating livestock. Arnold Schwarzenegger's non-fossil fuel Hummers and ‘Less meat, less heat, more life' campaign would appear to be good promotion for the shape of things to come - if he can be that progressive, there's hope for everyone. Then of course there's the potential for far more insect-based foodstuffs.

2. Food and water. A regional change in temperature of only a few degrees can seriously affect crop production and the amount of water used by agriculture. Over 700 million people are already without clean water, with shortages affecting agriculture even in developed regions - Australia and California spring to mind. Apparently, it takes a thousand litres of water to generate a single litre of milk!

Solution: A few far-sighted Australian farmers are among those developing methods to minimise water usage, including a few low-tech schemes that could be implemented anywhere. However, really obvious solutions would be to reduce the human population and eat food that requires less water. Again, bug farming seems a sensible idea.

1. Preventing vegegeddon. A former professor at Oxford University told me that some of his undergraduates have problems relating directly to others, having grown up in an environment with commonplace communication via electronic interfaces. If that's the problem facing the intellectual elite, what hope for the rest of our species? Physical problems such as poor eyesight are just the tip of the iceberg: the human race is in severe danger of degenerating into low-attention ‘sheeple' (as they say on Twitter). Children are losing touch with the real world, being enticed into virtual environments that on the surface are so much more appealing. Without knowledge or experience of reality, even stable democracies are in danger of being ruled by opportunistic megalomaniacs, possibly in orange wigs.

Solution: Richard Louv, author of  Last Child in the Woods: Saving Our Children From Nature-Deficit Disorder suggests children require unstructured time out of doors in order to gain an (occasionally painful) understanding of  the real world; tree-climbing, fossicking, etc. Restricting time on electronic devices would seem to go hand in hand with this.

Well, that about wraps it up from me. And if the above seems somewhat scary, then why not do something about it: wouldn't working for a better future be the best Christmas present anyone could ever give?

Tuesday 26 January 2016

Spreading the word: 10 reasons why science communication is so important

Although there have been science-promoting societies since the Renaissance, most of the dissemination of scientific ideas was played out at royal courts, religious foundations or for similarly elite audiences. Only since the Royal Institution lectures of the early 19th century and such leading lights as Michael Faraday and Sir Humphry Davy has there been any organised communication of the discipline to the general public.

Today, it would appear that there is a plethora - possibly even a glut - in the market. Amazon.com carries over 192,000 popular science books and over 4,000 science documentary DVD titles, so there's certainly plenty of choice! Things have dramatically improved since the middle of the last century, when according to the late evolutionary biologist Stephen Jay Gould, there was essentially no publicly-available material about dinosaurs.

From the ubiquity of the latter (especially since the appearance of Steven Spielberg's originally 1993 Jurassic Park) it might appear that most science communication is aimed at children - and, dishearteningly, primarily at boys - but this really shouldn't be so. Just as anyone can take evening courses in everything from pottery to a foreign language, why shouldn't the public be encouraged to understand some of the most important current issues in the fields of science, technology, engineering and mathematics (STEM), at the same time hopefully picking up key methods of the discipline?

As Carl Sagan once said, the public are all too eager to accept the products of science, so why not the methods? It may not be important if most people don't know how to throw a clay pot on a wheel or understand why a Cubist painting looks as it does, but it certainly matters as to how massive amounts of public money are invested in a project and whether that research has far-reaching consequences.
Here then are the points I consider the most important as to why science should be popularised in the most accessible way - although without oversimplifying the material to the point of distortion:

1. Politicians and the associated bureaucracy need basic understanding of some STEM research, often at the cutting edge, in order to generate new policies. Yet as I have previously examined, few current politicians have a scientific background. If our elected leaders are to make informed decisions, they need to understand the science involved. It's obvious, but then if the summary material they are supplied with is incorrect or deliberately biased, the outcome may not be the most appropriate one. STEM isn't just small fry: in 2010 the nations with the ten highest research and development budgets had a combined spend of over US$1.2 trillion.

2. If public money is being used for certain projects, then taxpayers are only able to make valid disagreements as to how their money is spent if they understand the research (military R&D excepted of course, since this is usually too hush-hush for the rest of us poor folk to know about). In 1993 the US Government cancelled the Superconducting Super Collider particle accelerator as it was deemed good science but not affordable science. Much as I love the results coming out of the Large Hadron Collider, I do worry that the immense amount of funding (over US$13 billion spent by 2012) might be better used elsewhere on other high-technology projects with more immediate benefits. I've previously discussed both the highs and lows of nuclear fusion research, which surely has to be one of the most important areas in mega-budget research and development today?

3. Criminal law serves to protect the populace from the unscrupulous, but since the speed of scientific advances and technological change run way ahead of legislation, public knowledge of the issues could help prevent miscarriages of justice or at least wasting money. The USA population has spent over US$3 billion on homeopathy, despite a 1997 report by the President of the National Council Against Health Fraud that stated "Homeopathy is a fraud perpetrated on the public." Even a basic level of critical thinking might help in the good fight against baloney.

4. Understanding of current developments might lead to reliance as much on the head as the heart. For example, what are the practical versus moral implications for embryonic stem cell research (exceptionally potent with President Obama's State of the Union speech to cure cancer). Or what about the pioneering work in xenotransplantation: could the next few decades see the use of genetically-altered pig hearts to save humans, and if so would patients with strong religious convictions agree to such transplants?

5. The realisation that much popular journalism is sensationalist and has little connection to reality. The British tabloid press labelling of genetically-modified crops as 'Frankenstein foods' is typical of the nonsense that clouds complex and serious issues for the sake of high sales. Again, critical thinking might more easily differentiate biased rhetoric from 'neutral' facts.

6. Sometimes scientists can be paid to lie. Remember campaigns with scientific support from the last century that stated smoking tobacco is good for you or that lead in petrol is harmless? How about the DuPont Corporation refusing to stop CFC production, with the excuse that capitalist profit should outweigh environmental degradation and the resulting increase in skin cancer? Whistle-blowers have often been marginalised by industry-funded scientists (think of the initial reaction to Rachel Carson concerning DDT) so it's doubtful anything other than knowledge of the issues would penetrate the slick corporate smokescreen.

7. Knowing the boundaries of the scientific method - what science can and cannot tell us and what should be left to other areas of human activity - is key to understanding where the discipline should fit into society. I've already mentioned the moral implications and whether research can be justified due to the potential outcome, but conversely, are there habits and rituals, or just societal conditioning, that blinds us to what could be achieved with public lobbying to governments?

8. Nations may be enriched as a whole by cutting out nonsense and focusing on solutions for critical issues, for example by not having to waste time and money explaining that global warming and evolution by natural selection are successful working theories due to the mass of evidence. Notice how uncontroversial most astronomical and dinosaur-related popularisations are. Now compare to the evolution of our own species. Enough said!

9. Improving the public perspective of scientists themselves. A primary consensus still seems to promote the notion of lone geniuses, emotionally removed from the rest of society and frequently promoting their own goals above the general good. Apart from the obvious ways in which this conflicts with other points already stated, much research is undertaken by large, frequently multi-national teams; think Large Hadron Collider, of course. Such knowledge may aid removal of the juvenile Hollywood science hero (rarely a heroine) and increase support for the sustained efforts that require public substantial funding (nuclear fusion being a perfect example).

10. Reducing the parochialism, sectarianism and their associated conflict that if anything appears to be on the increase. It's a difficult issue and unlikely that it could be a key player but let's face it, any help here must be worth trying. Neil deGrasse Tyson's attitude is worth mentioning: our ideological differences seem untenable against a cosmic perspective. Naïve perhaps, but surely worth the effort?

Last year Bill Gates said: "In science, we're all kids. A good scientist is somebody who has redeveloped from scratch many times the chain of reasoning of how we know what we know, just to see where there are holes." The more the rest of us understand this, isn't there a chance we would notice the holes in other spheres of thought we currently consider unbending? This can only be a good thing, if we wish to survive our turbulent technological adolescence.