Friday, 11 August 2017

From steampunk to Star Trek: the interwoven strands between science, technology and consumer design

With Raspberry Pi computers having sold over eleven million units by the end of last year, consumer interest in older technology appears to have become big business. Even such decidedly old-school devices as crystal radio kits are selling well, whilst replicas of vintage telescopes are proof that not everyone has a desire for the cutting-edge. I'm not sure why this is so, but since even instant Polaroid-type cameras are now available again - albeit with a cute, toy-like styling - perhaps manufacturers are just capitalising on a widespread desire to appear slightly out of the ordinary. Even so, such products are far closer to the mainstream than left field: instant-developing cameras for example now reach worldwide sales of over five million per year. That's hardly a niche market!

Polaroid cameras aside, could it be the desire for a less minimal aesthetic that is driving such purchases? Older technology, especially if it is pre-integrated circuit, has a decidedly quaint look to it, sometimes with textures - and smells - to match. As an aside, it's interesting that whilst on the one hand current miniaturisation has reduced energy consumption for many smaller pieces of technology from the Frankenstein laboratory appearance of valve-based computing and room-sized mainframes to the smart watch etal, the giant scale of cutting-edge technology projects require immense amounts of energy, with nuclear fusion reactors presumably having overtaken the previous perennial favourite example of space rockets when it comes to power usage.

The interface between sci-tech aesthetics and non-scientific design is a complicated one: it used to be the case that consumer or amateur appliances were scaled-down versions of professional devices, or could even be home-made, for example telescopes or crystal radios. Nowadays there is a massive difference between the equipment in high-tech laboratories and the average home; even consumer-level 3D printers won't be able to reproduce gravity wave detectors or CRISPR-Cas9 genome editing tools any time soon.

The current trend in favour - or at least acknowledgement - of sustainable development, is helping to nullify the pervasive Victorian notion that bigger, faster, noisier (and smellier) is equated with progress. It's therefore interesting to consider the interaction of scientific ideas and instruments, new technology and consumerism over the past century or so. To my mind, there appear to be five main phases since the late Victorian period:
  1. Imperial steam
  2. Streamlining and speed
  3. The Atomic Age
  4. Minimalism and information technology
  5. Virtual light

1) Imperial steam

In the period from the late Nineteenth Century's first generation of professional scientists up to the First World War, there appears to have been an untrammelled optimism for all things technological. Brass, iron, wood and leather devices - frequently steam-powered - created an aesthetic that seemingly without effort has an aura of romance to modern eyes.

Although today's steampunk/alternative history movement is indebted to later authors, especially Michael Moorcock, as much as it is to Jules Verne and H.G. Wells, the latter pair are only the two most famous of a whole legion of late Victorian and Edwardian writers who extolled - and occasionally agonised over - the wonders of the machine age.

I must confess I much prefer steam engines to electric or diesel locomotives, despite the noise, smuts and burning of fossil fuels. Although the pistons and connecting rods of these locomotives might be the epitome of the design from this phase, it should be remembered that it was not unknown for Victorian engineers to add fluted columns and cornucopia reliefs to their cast iron and brass machinery, echoes of a pre-industrial past. An attempt was being made, however crude, to tie together the might of steam power to the Classical civilisations that failed to go beyond the aeolipile toy turbine and the Antikythera mechanism.

2) Streamlining and speed

From around 1910, the fine arts and then decorative arts developed new styles obsessed with mechanical movement, especially speed. The dynamic work of the Futurists led the way, depicting the increasing pace of life in an age when humans and machines were starting to interact ever more frequently. The development of heavier-than-air flight even led to a group of 'aeropainters' whose work stemmed from their experience of flying.

Although scientific devices still had some of the Rube Goldberg/Heath Robinson appearance of their Nineteenth Century forebears, both consumer goods and vehicles picked up the concept of streamlining to suggest a sophisticated, future-orientated design. Items such as radios and toasters utilised early plastics, stainless steel and chrome to imply a higher level of technology than their interiors actually contained. This is in contrast to land, sea and aerial craft, whereby the practical benefits of streamlining happily coincided with an attractive aesthetic, leading to design classics such as the Supermarine seaplanes (forerunners of the Spitfire) and the world speed record-holding A4 Pacific Class steam locomotives.

3) The Atomic Age

By the 1950s practically anything that could be streamlined was, whether buildings that looked like ocean liners or cars with rocket-like tailfins and dashboards fit for a Dan Dare spaceship. However, a new aesthetic was gaining popularity in the wake of the development of atomic weapons. It seems to have been an ironic move that somewhere between the optimism of an era of exciting new domestic gadgets and the potential for nuclear Armageddon, the Bohr (classical physics) model of the atom itself gained a key place in post-war design.

Combined with rockets and space the imagery could readily be termed 'space cadet', but it wasn't the only area of science to influence wider society. Biological research was undergoing a resurgence, which may explain why stylised x-ray forms, amoebas and bodily organs become ubiquitous on textiles, furnishings, and fashion. Lighting fixtures were a standout example of items utilising designs based on the molecular models used in research laboratories (which famously gave Crick and Watson the edge in winning the race to understand the structure of DNA).

Monumental architecture also sought to represent the world of molecules on a giant scale, culminating in the 102 metre-high Atomium built in Brussels for the 1958 World's Fair. It could be said that never before had science- and technological-inspired imagery been so pervasive in non-STEM arenas.

4) Minimalism and information technology

From the early 1970s the bright, optimistic designs of the previous quarter century were gradually replaced by the cool, monochromatic sophistication of minimalism. Less is more became the ethos, with miniaturisation increasing as solid-state electronics and then integrated circuits became available. A plethora of artificial materials, especially plastics, meant that forms and textures could be incredibly varied if refined.

Perhaps a combination of economic recession, mistrust of authority (including science and a military-led technocracy) and a burgeoning awareness of environmental issues led to the replacement of exuberant colour with muted, natural tones and basic if self-possessed geometries. Consumers could now buy microcomputers and video games consoles; what had previously only existed in high-tech labs or science fiction became commonplace in the household. Sci-fi media began a complex two-way interaction with cutting-edge science; it's amazing to consider that only two decades separated the iPad from its fictional Star Trek: The Next Generation predecessor, the PADD.

5) Virtual light

With ultra high-energy experiments such as nuclear fusion reactors and the ubiquity of digital devices and content, today's science-influenced designs aim to be simulacra of their professional big brothers. As stated earlier, although consumer technology is farther removed from mega-budget science apparatus than ever, the former's emphasis on virtual interfaces is part of a feedback loop between the two widely differing scales.

The blue and green glowing lights of everything from futuristic engines to computer holographic interfaces in many Hollywood blockbusters are representations of both the actual awesome power required by the likes of the Large Hadron Collider and as an analogy for the visually-unspectacular real-life lasers and quantum teleportation, the ultimate fusion (sorry, couldn't resist that one) being the use of the real National Ignition Facility target chamber as the engine core of the USS Enterprise in Star Trek: Into Darkness.

Clearly, this post-industrial/information age aesthetic is likely to be with us for some time to come, as consumer-level devices emulate the cool brilliance of professional STEM equipment; the outer casing is often simple yet elegant, aiming not to distract from the bright glowing pixels that take up so much of our time. Let's hope this seduction by the digital world can be moderated by a desire to keep the natural, material world working.

Friday, 28 July 2017

Navigating creation: A Cosmic Perspective with Neil deGrasse Tyson


I recently attended an interesting event at an Auckland venue usually reserved for pop music concerts. An audience in the thousands came to Neil deGrasse Tyson: A Cosmic Perspective, featuring the presenter of Cosmos: A Spacetime Odyssey and radio/tv show StarTalk. The 'Sexiest Astrophysicist Alive' presented his brand of science communication to an enormous congregation (forgive the use of the word) of science fans aged from as young as five years old. So was the evening a success? My fellow science buffs certainly seemed to have enjoyed it, so I decided it would be worthwhile to analyse the good doctor's method of large-scale sci-comm.

The evening was split into three sections, the first being the shortest, a primer as to our location in both physical and psychological space-time. After explaining the scale of the universe via a painless explanation of exponents, Dr Tyson used the homespun example of how stacking the 'billions' (which of course he declared to be Carl Sagan's favourite word) of Big Macs so far sold could be stacked many times around the Earth's circumference and even then extend onwards to the Moon and back. Although using such a familiar object in such unusual terrain is a powerful way of taking people outside their comfort territory, there was nothing new about this particular insight, since Dr Tyson has been using it since at least 2009; I assume it was a case of sticking to a tried-and-trusted method, especially when the rest of the evening was (presumably) unscripted.

Billions of Big Macs around the Earth and moon

Having already belittled our location in the universe, the remainder of the first segment appraised our species' smug sense of superiority, questioning whether extra-terrestrials would have any interest in us any more than we show to most of the biota here on Earth. This was a clear attempt to ask the audience to question the assumptions that science fiction, particularly of the Hollywood variety, has been popularising since the dawn of the Space Age. After all, would another civilisation consider us worthy of communicating with, considering how much of our broadcasting displays obvious acts of aggression? In this respect, Neil deGrasse Tyson differs markedly from Carl Sagan, who argued that curiosity would likely be a mutual connection with alien civilisations, despite their vastly superior technology. Perhaps this difference of attitude isn't surprising, considering Sagan's optimism has been negated by both general circumstance and the failure of SETI in the intervening decades.

Dr Tyson also had a few gibes at the worrying trend of over-reliance on high technology in place of basic cognitive skills, describing how after once working out some fairly elementary arithmetic he was asked which mobile app he had used to gain the result! This was to become a central theme of the evening, repeated several times in different guises: that rather than just learning scientific facts, non-scientists can benefit from practising critical thinking in non-STEM situations in everyday life.

Far from concentrating solely on astrophysical matters, Dr Tyson also followed up on topics he had raised in Cosmos: A Spacetime Odyssey regarding environmental issues here on Earth. He used Apollo 8's famous 'Earthrise' photograph (taken on Christmas Eve 1968) as an example of how NASA's lunar landing programme inspired a cosmic perspective, adding that organisation such as the National Oceanic and Atmospheric Administration and the Environmental Protection Agency were founded during the programme. His thesis was clear: what began with political and strategic causes had fundamental benefits across sectors unrelated to space exploration; or as he put it "We're thinking we're exploring the moon and we discovered the Earth for the first time."

The second and main part of the event was Tyson's discussion with New Zealand-based nanotechnologist and science educator Michelle Dickinson, A.K.A. Nanogirl. I can only assume that there aren't any New Zealand astronomers or astrophysicists as media-savvy as Dr Dickinson, or possibly it's a case of celebrity first and detailed knowledge second, with a scientifically-minded interviewer deemed to have an appropriate enough mindset even if not an expert in the same specialisation.

The discussion/interview was enlightening, especially for someone like myself who knows Neil deGrasse Tyson as a presenter but very little about him as a person. Dr Tyson reminisced how in 1989 he accidentally become a media expert solely on the basis of being an astrophysicist and without reference to him as an Afro-American, counter to the prevailing culture that only featured Afro-Americans to gain their point of view.

Neil deGrasse Tyson: A Cosmic Perspective

Dr Tyson revealed himself to be both a dreamer and a realist, the two facets achieving a focal point with his passion for a crewed mission to Mars. He has often spoken of this desire to increase NASA's (comparatively small) budget so as reinvigorate the United States via taking humans out from the humdrum comfort zone of low earth orbit. However, his understanding of how dangerous such a mission would be led him to state he would only go to Mars once the pioneering phase was over!

His zeal for his home country was obvious - particularly the missed opportunities and the grass roots rejection of scientific expertise prevalent in the United States - and it would be easy to see his passionate pleas for the world to embrace Apollo-scale STEM projects as naïve and out-of-touch. Yet there is something to be said for such epic schemes; if the USA is to rise out of its present lassitude, then the numerous if unpredictable long-term benefits of, for example, a Mars mission is a potential call-to-arms.

The final part of the evening was devoted to audience questions. As I was aware of most of the STEM and sci-comm components previously discussed this was for me perhaps the most illuminating section of the event. The first question was about quantum mechanics, and so not unnaturally Dr Tyson stated that he wasn't qualified to answer it. Wouldn't it be great if the scientific approach to expertise could be carried across to other areas where people claim expert knowledge that they don't have?

I discussed the negative effects that the cult of celebrity could have on the public attitude towards science back in 2009 so it was extremely interesting to hear questions from several millennials who had grown up with Star Talk and claimed Neil deGrasse Tyson as their idol. Despite having watched the programmes and presumably having read some popular science books, they fell into some common traps, from over-reliance on celebrities as arbiters of truth to assuming that most scientific theories rather than just the cutting edge would be overturned by new discoveries within their own lifetimes.

Dr Tyson went to some lengths to correct this latter notion, describing how Newton's law of universal gravitation for example has become a subset of Einstein's General Theory of Relativity. Again, this reiterated that science isn't just a body of facts but a series of approaches to understanding nature. The Q&A session also showed that authority figures can have a rather obvious dampening effect on people's initiative to attempt critical analysis for themselves. This suggests a no-win situation: either the public obediently believe everything experts tell them (which leads to such horrors as the MMR vaccine scandal) or they fail to believe anything from STEM professionals, leaving the way open for pseudoscience and other nonsense. Dr Tyson confirmed he wants to teach the public to think critically, reducing gullibility and thus exploitation by snake oil merchants. To this end he follows in the tradition of James 'The Amazing' Randi and Carl Sagan, which is no bad thing in itself.

In addition, by interviewing media celebrities on StarTalk Dr Tyson stated how he can reach a far wider audience than just dedicated science fans. For this alone Neil deGrasse Tyson is a worthy successor to the much-missed Sagan. Let's hope some of those happy fans will be inspired to not just dream, but actively promote the cosmic perspective our species sorely needs if we are to climb out of our current doldrums.

Monday, 10 July 2017

Genius: portraying Albert Einstein as a human being, not a Hollywood stereotype

I recently watched the National Geographic docudrama series Genius, presenting a warts-and-all look at the life and work of Albert Einstein. In these post-truth times in which even a modicum of intellectual thought is often regarded with disdain, it's interesting to see how a scientific icon is portrayed in a high-budget, high-profile series.

A few notable examples excepted, Dr Frankenstein figures still inform much of Hollywood's depiction of STEM practitioners. Inventors are frequently compartmentalised as either patriotic or megalomaniac, often with a love of military hardware; Jurassic Park's misguided and naive Dr John Hammond seemingly a rare exception. As for mathematicians, they are often depicted with more than a touch of insanity, such as in Pi or Fermat's Room.

So does Genius break the mould or follow the public perception of scientists as freaky, geeky, nerdy or plain evil? The script is a fairly sophisticated adaptation of real life events, although the science exposition suffers as a result. Despite some computer graphic sequences interwoven with the live action, the attempts to explore Einstein's thought experiments and theories are suggestive rather than comprehensive, the tip of the iceberg when it comes to his scientific legacy. Where the series succeeds is in describing the interaction of all four STEM disciplines: science, technology, engineering and mathematics; and the benefits when they overlap. The appalling attitudes prevalent in the academia of his younger years are also brought to vivid life, with such nonsense as not questioning tutors piled onto the usual misogyny and xenophobia.

Albert Einstein

Contrary to the popular conception of the lone genius - and counter to the series' title - the role of Einstein's friends such as Marcel Grossmann and Michele Besso as his sounding boards and mathematical assistants is given a high profile. In addition, the creative aspect of science is brought to the fore in sequences that show how Einstein gained inspiration towards his special and general theories of relativity.

The moral dimension of scientific research is given prominence, from Fritz Haber's development of poison gas to Leo Szilard's persuasion of Einstein to both encourage and later dissuade development of atomic weapons. As much as the scientific enterprise might appear to be separate from the rest of human concern, it is deeply interwoven with society; the term 'laboratory conditions' applies to certain processes, not to provide a wall to isolate science from everything else. Scientists in Genius are shown to have the same human foibles as everyone else, from Einstein's serial adultery (admittedly veering to Hollywood family drama at times, paternal guilt complex etal) to Philipp Lenard's dismissal of Einstein's theories due to his anti-Semitism rather than any scientific evidence. So much for scientific impartiality!

The last few episodes offer a poignant description of how even the greatest of scientific minds lose impetus, passing from creative originality as young rebels to conservative middle age stuck-in-the-muds, out of touch with the cutting edge. General readership books on physics often claim theoretical physicists do their best work before they are thirty, with a common example being that Einstein might as well have spent his last twenty years fishing. Although not as detailed as the portrayal of his early, formative years, Einstein's obsessive (but failed) quest to find fault with quantum mechanics is a good description of how even the finest minds can falter.

All in all, the first series of Genius is a very noble attempt to describe the inspiration and background that led to some revolutionary scientific theories. The irony is that by concentrating on Einstein as a human being it might help the wider public gain a better appreciation, if not comprehensive understanding, of the work of scientists and role of STEM in society. Surely that's no bad thing, especially if it makes Hollywood rethink the lazy stereotype of the crazy-haired scientist seeking world domination. Or even encourages people to listen to trained experts rather than the rants of politicians and religious nutbars. Surely that's not a difficult choice?

Monday, 26 June 2017

The power of pond scum: are microalgae biofuels a realistic proposition?

I've previously discussed some very humble organisms but they don't get much humbler than microalgae, photosynthetic organisms that generate about half our planet's atmospheric oxygen. Imagine then what potential there might be for their exploitation in a world of genetic manipulation and small-scale engineering? The total number of algal species is unknown, but estimates suggest some hundreds of thousands. To this end, private companies and government projects around the world have spent the past few decades - and a not inconsiderable amount of funding - to generate a replacement for fossil fuels based on these tiny plants.

For anyone with even a microgram's worth of common sense, developing eco-friendly substitutes for oil, coal and gas is a consummation to be devoutly wished for, but behind the hype surrounding microalgae-derived fuel there is a wealth of opposing opinions and potential some shady goings-on. Whilst other projects such as creating ethanol from food crops are continuing, the great hope - and hype -that surrounded algae-based solutions appears to be grinding to a halt.

Various companies were forecasting that 2012 would be the year that the technology achieved commercial viability, but this now appears to be rather over-eager. Therefore it's worth exploring what happens when hope, high-value commerce and cutting-edge technology meet. There are some big names involved in the research too: ExxonMobil, Shell and BP each pumped tens to hundreds of millions of dollars into microalgae fuel projects, only to either make substantial funding cuts or shut them down altogether since 2011.
Microalgae-derived biofuel
Manufacturing giants such as General Electric and Boeing have been involved in research for new marine and aircraft fuels, whilst the US Navy undertook tests in 2012 whereby algae-derived fuel was included in a 50:50 blend with conventional fossil fuel for ships and naval aircraft. Even shipping companies have become interested, with one boffin-worthy idea being for large cruise ships to grow and process their own fuel on-board. Carriers including United Airlines, Qantas, KLM and Air New Zealand have invested in these kerosene-replacement technologies, with the first two of these airlines having trialled fuel blends including 40% algae derivative. So what has gone wrong?

The issue appears to be one of scale: after initial success with laboratory-sized testing, the expansion to commercial production has encountered a range of obstacles that will most likely delay widespread implementation for at least another quarter century.

The main problems are these:
  1. The algae growing tanks need to be on millions of acres of flat land and there are arguments there just isn't enough such land in convenient locations.
  2. The growing process requires lots of water, which means large transportation costs to get the water to the production sites. Although waste water is usable, some estimates suggest there is not enough of this - even in the USA - for optimal production.
  3. Nitrogen and phosphorus are required as fertiliser, further reducing commercial viability. Some estimates suggest half the USA's annual phosphorus amount would need to be requisitioned for use in this one sector!
  4. Contamination by protozoans and fungi can rapidly destroy a growing pond's entire culture.
In 2012 the US National Academy of Sciences appeared to have confirmed these unfortunate issues. Reporting on the Department of Energy goal to replace 5% of the nation's vehicle fossil fuel consumption with algae-derived biofuel, the Academy stated that this scale of production would make unfeasibly large impacts on water and nutrient usage, as well heavy commitments from other energy sources.

In a bid to maintain solvency, some independent research companies appear to have minimised such issues for as long as possible, finally diversifying when it appeared their funding was about to be curtailed or cut-off. As with nuclear fusion research, commercial production of microalgae fuels hold much promise, but those holding the purse strings aren't as patient as the researchers.

There may be a hint of a silver lining to all this, even if wide scale operations are postponed many decades. The microalgae genus Chlorella - subject of a Scottish biofuel study - is proving to be a practical source of dietary supplements, from vitamins and minerals to Omega-3. It only lacks vitamin B12, but is an astonishing 50-60% protein by weight. As well as human consumption, both livestock and aquaculture feed supplements can be derived from microalgae, although as usual there is a wealth of pseudoscientific nonsense in the marketing, such as the notion that it has an almost magical detox capability. Incidentally, Spirulina, the tablets and powder sold in health food outlets to make into green gloop smoothies, is not microalgae but a B12-rich cyanobacteria, colloquially - and confusingly - known as blue-green algae. Glad that's cleared that one up!

If anything, the research into microalgae-derived biofuels is a good example of how new technology and commercial enterprise uneasily co-exist; each needs the other, but gaining a workable compromise is perhaps just a tricky as the research itself. As for Government-funded projects towards a better future for all, I'll leave you to decide where the interests of our current leaders lie...

Saturday, 10 June 2017

Owning the aliens: who should support endangered species thriving outside their home territories?

On holiday in Fiji last year I was surprised to learn that the most commonly-seen animals - with the exception of flying foxes - were recent introductions from other countries, primarily India. Examples include the red-vented bulbul, mynah bird, house gecko, and mongoose, all of which have brought their own problems to either native wildlife or Fijian agriculture.

From Hawaii to New Zealand, the deliberate or accidental introduction of non-native animals, plants and fungi has had profoundly negative effects on these previously isolated ecosystems. So what happens if an introduced organism, especially one that has a deleterious effect on wildlife, thrives in its transplanted habitat whilst becoming endangered across its original range? Two questions spring to mind: should the adopted homeland be able to exterminate the alien invader with impunity; and/or should the country of origin fund work in the invaded nation during a 'lifeboat' phase, until the home turf is suitable for restocking?

Almost inevitably, the countries with the highest number of at-risk species tend to be the poorer ones, Australia and the United States excepted. Reports over the past four years list a variety of nations with this sorry state of affairs, but amongst different conservation groups those within the top ten for endangered animal species include Indonesia, Malaysia, Ecuador, Mexico, India and Brazil. In some of these there is little political willpower - or indeed funding - to support anything deemed non-critical, with biodiversity seen as a nice-to-have.

For small nations such as Fiji there is little in the way of an environmental lobby. NatureFiji-MareqetiViti is an organisation that attempts to safeguard such threatened animals as the Fijian Crested Iguana whilst enhancing regional biosecurity, but with grants - including from the European Union - rarely exceeding a few tens or hundreds of thousands Fijian dollars they are woefully underfunded.

Which brings us to New Zealand, with its collection of endangered birds, lizards, freshwater fish and the Maui dolphin. In addition to Department of Conservation (Doc) budget cuts over the past decade - claimed by some organisations to total a 21% decline in real terms - the nation is home to several Australian animals that are nationally vulnerable in their native homeland across the Tasman Sea.

The green and golden bell frog (Litoria aurea) is a prime example of this, with a rapidly reducing Australian range having generated a status of 'globally vulnerable' yet being common enough in the northern part of New Zealand's North Island. I found this specimen at Auckland's Botanic Gardens earlier this year.


Therefore should the Australian Government fund a captive breeding programme - or simply a round-up - of individuals in New Zealand? After all, the latter has its own four native frog species, all rare and/or endangered, for its herpetologists to concentrate on.

There is a precedent for this. In 2003, three Australian trappers captured rare brush-tailed rock-wallabies on New Zealand's Kawau Island, where the marsupial's 'noxious' pest status meant
they were about to be targeted for eradication. The project included support from DoC but presumably - it's difficult to ascertain - the funding came from Australia.

Of course Australia may be able to afford to engage in restocking programmes abroad, but few other nations are in the same position. Although the largest conservation organisation in the world, the World Wide Fund for Nature (World Wildlife Fund in North America) has a comparatively large budget, even it cannot afford to support every repatriation or gene pool nursery scheme. Meanwhile, local charities such as NatureFiji-MareqetiViti tend to rely on volunteers rather than trained professionals and don't have the scope or capability for logistically-complex international undertakings.

With the USA becoming increasingly insular and Europe consumed with its own woes, the potential funding sources for these interim lifeboats is rapidly drying up. There are a few eco-angels, such as Norway's US$1 billion donation to Brazil - intended to curtail Amazonian rainforest destruction - but they are few and far between. It's one thing to support in-situ environmental issues, but another to raise funds to save selected endangered species thriving away from their native ecosystem.

It appears that there is no single solution to this, meaning that except for a few lucky 'poster' cases, many at-risk species may well fail to gain attention and be allowed to die out (or even be exterminated as foreign pests). The original home territory might no longer contain a suitable environment for them to thrive in whilst the foster nation lacks the impetus or funding to look after those pesky alien invaders. It seems that there are difficult times ahead!