Thursday 19 December 2019

Our family and other animals: do we deliberately downplay other species' intelligence?

I recently heard about a project investigating canine intelligence, the results being that man's best friend can distinguish similar-sounding words, even if spoken by strangers. Yet again, it appears there is a less and less that makes our species unique: from the problem-solving skills of birds to social insects' use of farming techniques we find ourselves part of a continuum of life rather than standing alone at the apex.

Reading the Swedish philosopher Nick Bostrom's thought-provoking book Superintelligence, I was struck by his description of the variation of human intellect (from as he put it, Einstein to the village idiot) as being startling narrow when compared to the potential range of possible intelligences, both biological and artificial.

The complexity of animal brains has been analysed by both quantitive and qualititive methods, the former dealing with such measurements as the number of neurons while the latter looks at behaviour of members of a species, both in the wild and under laboratory conditions. However, a comparison of these two doesn't necessarily provide any neat correlation.

For example, although mammals are generally - and totally incorrectly - often described as the pinnacle of creation due to their complex behaviour and birth-to-adult learning curve, the quantitive differences in neural architecture within mammals are far greater than those between amphibians and some mammalian families. In addition, there are many birds, mostly in the Psittacidae (parrot) and Corvidae (crow) families, that are both quantitatively and qualitatively superior to most mammals with the exception of some primates.

I think it was the essays of evolutionary biologist Stephen Jay Gould that introduced me to the concept of EQ or encephalisation quotient, which is a label for the brain-mass to body-mass ratio. On these terms, the human brain is far larger than nearly all other species with a similar sized body, the exception (perhaps not surprisingly) being dolphins.

However, it's difficult to draw accurate conclusions just from examination of this general trend: both the absolute size of the brain and neuron density play a fundamental role in cognitive powers. For example, gorillas have a lower EQ that some monkeys, but being a large ape have a far greater brain mass. It could be said then, that perhaps beyond a certain mass the absolute brain size renders the EQ scale of little use. A 2009 study found that different rules for scaling come into play, with humans also having a highly optimal use of the volume available with the cranium, in addition to the economical architecture common among primates.

As historian and philosopher Yuval Noah Harari has pointed out, the development of farming, at least in Eurasia, went hand in hand with the evolution of sophisticated religious beliefs. This led to a change in human attitudes towards the other animals, with a downplay of the latter's emotional needs and their categorisation as inferior, vassal species in a pre-ordained (read: divinely-given) chain of being.

By directly connecting intelligence - or a lack thereof - to empathy and emotions, it is easy to claim that domesticated animal species don't mind their ruthless treatment. It isn't just industrial agriculture that makes the most of this lack of empathy today; I've seen small sharks kept in a Far Eastern jewellery store (i.e. as decoration, not as future food) in tanks barely longer than the creature's own body length.

Although the problem-solving antics of birds such as crows are starting to redress this, most people still consider animal intelligence strictly ordered by vertebrate classes, which leads to such inaccuracies as the 'three second goldfish memory'. I first noticed how incorrect this was when keeping freshwater invertebrates, namely shield shrimp A.K.A. triops, almost a decade ago. Even these tiny creatures appear to have a range of personalities, or perhaps I should say - in an effort to avoid blatant anthropomorphizing - a wide variety of behaviour.

Now on the verge of setting up a tropical aquarium for one of my children, I've been researching what is required to keep fish in fairly small tanks. I've spoken to various aquarium store owners and consulted numerous online resources, learning in the process that the tank environment needs to fulfill certain criteria. There's nothing in usual in this you might think, except that the psychological requirements need to be considered alongside the physical ones.

For example, tank keepers use words such as 'unhappy' and 'depression' to describe what happens when schooling fish are kept in too small a group, active swimmers in too little space and timid species housed in an aquarium without hiding places. We do not consider this fish infraclass - i.e. teleosts - to be Einsteins (there's that label again) of the animal kingdom, but it would appear we just haven't been observing them with enough rigour. They may have minute brains, but there is a complexity that suggests a certain level of emotional intelligence in response to their environment.

So where does all this leave us Homo sapiens, masters of all we survey? Neanderthal research is increasingly espousing the notion that in many ways these extinct cousins/partial ancestors could give us modern humans a run for our money. Perhaps our success is down to one particular component of uniqueness, namely our story-telling ability, a product of our vivid imagination.

Simply because other species lack this skill doesn't mean that they don't have any form of intellectual ability; they may indeed have a far richer sense of their universe than we would like to believe. If our greatest gift is our intelligence, don't we owe it to all other creatures we raise and hold captive to make their lives as pleasant as possible? Whether it's battery farming or keeping goldfish in a bowl, there's plenty we could do to improve things if we consider just what might be going on in the heads of our companion critters.

Wednesday 27 November 2019

Ocean acidification: climate change at the sour end

A few weeks ago, I overheard a 58 year old man telling a 12 year old boy that the most dire of scientists' warnings concerning global warming over the past 30 years had failed to materialise - and that what the boy needed to learn was to be able to separate facts from propaganda.

Although it is no doubt next to impossible to be able to change such entrenched mindsets as those of this particular baby boomer, there is still extremely limited public understanding of the insidious changes currently taking place in our oceans. In addition to the rise in both sea temperature and sea level (approaching a centimetre every two-to-three years) a rapid increase in ocean acidity is now on course to profoundly disrupt marine life.

With the USA pulling out of the Paris Agreement, will the rest of world manage to pull together in order to prevent another tipping point? After all, increasing ocean acidification isn't something us non-marine scientists can directly observe. One key point that is immediately obvious is that it isn't a localised issue: as a third of atmospheric carbon dioxide is absorbed into the oceans, all the planet's seas will be affected. The decrease of 0.1pH unit in the past few centuries equates to an astonishing 26-29% increase in acidity. What's more, this change is predicted to have doubled by the end of this century. Clearly, the effect on marine life is set to be substantial.

So what is being done to assess the probable issues? Various projects around the world are using mesocosms - transparent cylinders up to ten metres long - to understand the effects of current and predicted near-future acidity levels on marine life. Coral bleaching is possibly the one condition people will have heard of (although there appear to be an astonishing number of people who think that coral is a plant rather than invertebrate animal) but sea temperature changes are as much a cause as increased acidity. Apart from causing stress to some marine organisms, leading to such conditions as lowered immune systems and so the spread of disease, acidification reduces the material available for shell and carapace formation, especially for juveniles and nauplii.

The problem isn't so much the change itself as the rate of change, which is far faster than normal geophysical processes. Indeed, one report states that over the past 20 million years, changes in oceanic acidification have been barely one percent of the current rate. Obviously, there is minimal chance of the non-directed mechanism of natural selection keeping pace with adaptations to the new conditions.

While many organisms will suffer, some such as jellyfish and toxic algae may benefit, with the latter leading to the poisoning of key fishing industry species. This in turn could lead to toxins entering the human food chain, on top of the economic issues from the decline in fish and shellfish stocks. Indeed, the US Pacific coast aquaculture industry is already experiencing a reduction in the shellfish populations. This will be in addition to the pollution of fresh waterways already explored in a post last year.

Of the various experiments aiming to understand the impact of the rapid increase, the largest project is the pan-European Biological Impacts of Ocean Acidification (BIOACID) scheme. Giant mesocosms sunk in a Swedish fjord have been sealed with local ocean water (and associated organisms) and half of them modified with the projected pH level.

Similar but small projects are underway in New Zealand and the Canary Islands, with preservation of edible stocks a key priority. Another problem with a decline in shellfish species destined for human consumption would be the loss of the raw material for chitosan, which may prove to be an ecologically-friendly replacement for plastic packaging.

Clearly, there could be numerous - and some as yet unknown - knock-on effects from the ocean acidification. Unlike the rise in atmospheric temperature, it is much more difficult to see the results of this fundamental change and for the public to understand the consequences. Yet again, the life forms affected are far from the cute poster species usually paraded to jump-start the public's environmental consciousness. Unfortunately, these may prove to be far more critical to the future of humanity and the wider world than say, giant pandas or Amur leopards. It's time for some serious sci-comm to spread the warning message!

Wednesday 30 October 2019

Our feline friends - not so miaowvellous after all?


I've published a few posts concerning citizen science, from the active participation in conservation-orientated projects here in New Zealand to the more passive involvement in distributed computing projects that I briefly mentioned back in 2012.

A type of public involvement in scientific research half way between these examples has been developed to utilise the human ability to match up patterns, a skill which artificial intelligence is only just beginning to replicate. One early implementation of this was the Galaxy Zoo crowdsourced project, in which volunteers examining photographs taken by robotic, Earth-based telescopes to classify galaxies. Since 2009, the Zooniverse online portal has utilised more than one million volunteers to examine data on behalf of over fifty projects, many of which are within STEM disciplines.

Although initially often used for astronomy or astrophysics programmes, crowd sourcing platforms have latterly found an important role in conservation and biodiversity research. An example is the Smithsonian Institute-sponsored eMammal, which specialises in the examination of camera trap footage to identify the locations of animal species on a scale that could not obtained by other means.

In line with the outcome of the perhaps too ambitious Predator-free 2050 programme, one project that may require the assistance of the Zooniverse volunteers is analysis of feral cat DNA from New Zealand's Auckland Island. The DNA, derived partially from fecal matter (nice), is to discover what the cats on the island are eating. Although this research aims to discover the best way to remove invasive species from Auckland Island (cats are known to predate on native seabird species) there now appears to be another issue caused by cats living near coastlines.

Over the past fifteen years a body of evidence from around the world has shown that cats are directly responsible for the deaths of marine mammals. This might sound rather unlikely, but the microbial culprit, Toxoplasma gondii, is only found in the digestive system of cats. Both feral and domestic cats that catch and eat infected rodents or birds can acquire the parasite and pass it by their fecal matter into the wider environment via fresh water run-off or sewage outfalls. Eventually, it enters the marine food chain, reaching the apex in the former of cetaceans and pinnipeds among others.

Species such as sea otters, seals, and dolphins have been killed by toxoplasmosis, according to autopsies of specimens washed up on seashores as far apart as New Zealand and the USA. Increasing temperatures (thanks again, man-made climate change) and greater rainfall can spread toxoplasmosis even further. In addition to direct contamination from fecal matter, cat owners who flush cat litter down the toilet can also start the highly resilient microbes on a journey via sewer networks to the ocean. Among the New Zealand species proven to have been killed by infection are the critically endangered Maui dolphin and locally vulnerable Hector’s dolphin, so there is definitely a need for some prompt action.

It isn't just a case of the top marine predators eating infected fish or squid: sea mammals could swallow oocysts (basically, the protozoan equivalent of a fertilised egg) directly from water. Only now that Maui dolphins are falling victim to the parasite is the story of this deadly microbe becoming better known. Not incidentally, our species can also become ill with toxoplasmosis due to exposure to cat feces, with serious consequences for babies born to infected mothers and to people with compromised immune systems. In addition to the other potential dangers from the likes of Salmonella, Listeria and E. coli, the recent fad for 'raw' (i.e. unpasteurised) milk could lead to a far higher rate of toxoplasmosis in humans.

What can be done? Well, cat owners could stop flushing kitty litter down their toilets for a start. Is it a case that there are just too many cats in the world? Some recent reports claim that Homo sapiens and their domesticated species constitute 96% of the global mammal biomass. As for cat numbers, an estimate last year suggested that there are six hundred million pet cats and the same number of feral individuals worldwide.

Is this just too many? I admit that I'm fairly biased as it is: a few cat owners I know here in Auckland have pets that regularly kill skinks and it's only luck that these are invasive rainbow skinks rather than rare native species. When it comes to the likes of the last 55 Maui dolphins falling prey to a disease spread by an extremely common domesticated species, I'd rather be over-zealous than over-cautious in developing a solution. As far as I can see, the best control methods would be a vast reduction in cat numbers or the development of an innoculation for our feline friends that can kill the parasite. Somehow I doubt either course of action is likely, which means a far from purrfect method would be to educate cat owners as to how to minimise the spread of Toxoplasma gondii. So if you are a cat owner, or know of one, I guess this could be your time to shine...

Sunday 29 September 2019

Saving the oceans with chitosan: are prawns the new plastic?

Earlier in the year, I wrote a post concerning a new, extremely strong, material derived from limpet teeth. Bearing in mind our current reliance on oil-derived materials, another form of marine life may hold the key to the global plastic pollution crisis.

Every year over six million tons of crab, lobster and shrimp is processed as seafood. This industry's by-products include the chitin-rich carapaces of all these creatures. Chitin is a substance found in fungi and invertebrates, with a range of uses from making paper to food processing and biotech to water treatment. In the past five years, research has been gaining momentum for another use for chitin which may prove to be a game changer (and for once, this hyperbole could well prove an understatement).

Currently about 335 million tons of plastics are produced annually, of which one-third is for single (and therefore disposable) use. Only about twenty percent of the total is recycled. We have all seen news items about the Great Pacific Garbage Patch and the large numbers of wildlife species affected by ingesting such material. We are now also beginning to understand that we humans too are ingesting microplastic particles that contaminate our food chains, to the tune of forty to fifty thousand particles per person per year. Quite apart from the plastic itself, the unwanted materials in our food may contain absorbed chemicals and heavy metals known to be toxic. And that's separate to all the microplastic that rains down on us and our food from practically every manmade structure we enter.

In 2014 a biodegradable polymer was developed from chitosan, a material made by subjecting the chitinous carapaces of marine arthropods, primarily crustaceans, to a range of treatments. Chitosan has been in use for some decades in diverse fields such as medicine, as a biopesticide and as a filtration and clarification material. However, the acids used to produce it have markedly affected its green credentials. Over the past five years a rather more ecologically-friendly set of processing techniques, including ultrasonics and microwaves, have been developed. The upshot of this means that chitosan could eventuate into one of the most ubiquitous materials on the planet. Pioneering companies have been set up around the world to convert chitosan into biodegradable packaging.

One such corporation is the Scottish-based CuanTec, who are developing food packaging that is antimicrobial while also being compostable. They claim to be the first company able to use bacterial fermentation to extract chitin from langoustine shells on an industrial scale, which is subsequently processed into chitosan. The antimicrobial properties of the packaging means that the foodstuffs it contains will have a longer - possibly even doubled - shelf life, with protection against the likes of Salmonella, Listeria and E. coli.

The first three types of packaging are said to be a food film wrap, single-use milk bottles and beer can collators (the latter incidentally for a company who produce their alcohol from stale bread rolls!) However, to date CuanTec has sought crowd-funding in order to begin commercial operations, which seems astonishing. Their products are predicted to cost slightly more than the petro-chemical alternatives, but hopefully industry will realise that the advantages far outweigh this.

Across the Atlantic from CuanTec other companies are climbing on a similar bandwagon. Mari Signum in Virginia, USA, is utilising an ionised liquid (including vinegar) technique to extract chitin for the development of various products, including 3D-printed alternatives to plastic packaging. As a recognition of their efforts, last year the U.S. Environmental Protection Agency presented them with their Green Chemistry Challenge Award. They're not the only American company to investigate the potential of swapping plastics with chitosan: the California-based CruzFoam have expanded their research from chitin-derived surfboard cores to packaging aimed to replace polyurethane foam.

Universities in various nations are also working with chitin to produce bioplastics that combine with other materials such as cellulose. The National University of Singapore has combined grapefruit seed extract with chitosan to produce a composite film for use a food packaging which can extend the shelf life of perishables such as bread. In a nation as humid as Singapore, you can clearly see the savings to the consumer if such materials become commercially available - assuming the affected food producers don't buy up and block the relevant patents, that is!

Clearly, chitosan looks like a material whose time has come. Apart from the potentially vast reduction in plastics, the widespread use of chitosan-derived food packaging would likely lead to much less food being thrown away because it has spoiled. It's unlikely that chitosan manufacturers would run out of their raw material either, since chitin is the planet's second most abundant biopolymer - climate change effects on marine crustaceans not withstanding. I can't help but ponder just how many more natural substances are waiting their turn to be the next wonder material?

Monday 26 August 2019

Why tiny organisms can be big news: three stories focused on the smaller scales of life

I've often mentioned how small-scale life is overlooked compared to the larger creatures we share this planet with. Three recent examples concern progressively smaller species and show both how little most people know about such organisms and how such apparently inconsequential life forms can effect our species.

The first example comes from Shropshire in the United Kingdom and occurred last month. A family in Telford came home from holiday to find that the fish in their ornamental tank had died. On cleaning the tank, the toxic fumes that emanated from it were so dangerous as to poison the family, leading to a stay in an isolation ward while their house was sealed off. The agent responsible for this none other than Zoanthid soft corals growing on a tank ornament, which turned out to be palytoxin, for which there is no antidote. Severe cases can lead to death from respiratory or cardiac failure, making it the second most poisonous non-protein substance.

Incidentally, none of the news reports stated if it was the toxin that killed the fish in the aquarium. What is most interesting about this story was that the family were reported as being unaware that the coral was alive, in addition to not receiving a warning from the store they bought the coral from.

I'm uncertain whether they meant that they didn't know that corals are animals rather than plants or whether they considered them as some type of mineral! Either way this sort of lack of fairly basic knowledge about the natural world always fills me with amazement, as I would have thought that a combination of primary school books and David Attenborough documentaries would have supplied this information to just about anyone in the UK today.

Leaving aside the obvious fact that nature is not a harmless mis-en-scene built for the enjoyment of mankind, this example shows just how dangerous even small-scale life can be; proof indeed that you don't have to travel to Australia to come into close contact with highly toxic species. Once gain, global warming may increase such encounters, as since the start of the twenty-first century, the Mediterranean has been experiencing mass poisonings due to algal blooms produced by a palytoxin derivative. Perhaps the moral here is better education before buying a pet!

If NASA's recent announcement of the 2025 Europa Clipper mission comes to fruition we will be one step closer to knowing if there are exotic forms of life in the ice-blanketed ocean of this moon of Jupiter. However, it is possible that our very own Moon might already be harbouring animals of an altogether more terrestrial nature.

The Israeli Beresheet lander crashed there in April this year but news reports have suggested that a few thousand passengers in the form of barely visible tardigrades (no more than 1.2 millimeters long) may have survived, albeit in a dehydrated form of hibernation. Able to survive in a tun state without water and in conditions of intense cold and heat - as well as a high vacuum - these water bears are only susceptible to ultraviolet flux.

Experiments conducted on the International Space Station prove that tardigrades can be rehydrated back to normal after exposure to the outer space environment. The probes demise appears to have been rather fast, so whether the water bears could survive the impact and sudden change in temperature and loss of atmosphere is doubtful. Most news stories seem to play the cuteness factor, with few mentioning that biological contamination of another body could be a breach of international law. Of course, the Moon's lack of atmosphere and liquid water mean any survivors are likely to remain in a tun state unless they can be retrieved in the future.

Tardigrade research may one day aid the development of long-duration space travel and human hibernation. What I'd really like to know about this story is that had Beresheet landed successfully, just what were the plans for the tardigrades anyway? None of the articles I read stated just what sort of scientific experiment they were the unwilling participants in. It's not like they would be able to phone home!

The third story concerns a life form whose individuals are microscopic but none the less important in terms of their environmental impact en masse. Back in 2004, the Waiau River in New Zealand's South Island was found to contain large masses of didymo, a type of freshwater diatom or single-celled algae not known to be native to the Southern Hemisphere, let alone the country. Individual
Didymosphenia geminata, colloquially called 'rock snot', might not be any more than one or two hundred microns long but they are capable of generating clumps and strands of mucus around a meter in size. Other South Island rivers were soon found to be equally contaminated, with other nations ranging from Canada to Chile finding similar proliferation.

What made this outbreak interesting is that algal blooms are usually due to an excess of nutrients entering fresh water sources, primarily from agricultural run-off. In the case of didymo it appears to be quite the opposite, with massive increases in mucus production being generated by a severe lack of phosphorus. Ironically, this means that attempts to reduce nutrient levels in the affected rivers might have only exacerbated the problem. As evidence in favour of this hypothesis, rivers tested in New Zealand's North Island have been shown to contain a combination of high phosphorus and dead didymo cells.

It hasn't even been established beyond doubt as to whether didymo has been accidentally introduced to New Zealand and elsewhere, or whether it has always been a minor, unobtrusive component of the ecosystem previously kept in check. While some environmental departments and organisations seem to prefer the former option - presumably as ammunition in the fight against invasive species - either origin still leads to potential degradation. Smaller insect species that congregate around rivers and streams, such as gnats and midges, tend to increase in numbers at the expense of larger ones such as caddisflies and mayflies. This in turn could have a knock-on effect on freshwater fish, crustacea, and probably wading birds too.

Financially-important human activities are also affected, from commercial fishing to hydroelectric schemes, but there appears to be no method of eradicating didymo without destroying other life in the same river. Therefore it may turn out that the only solution is to pollute rivers with phosphorus in order to keep the diatom population at a minimum!

This is far from the first time that I have discussed small-scale life but the issues raised by these three stories show yet again that we maintain traditional scale prejudice at our peril. Whether it is a single household experiencing (potentially fatal) poisoning to widespread changes in freshwater environments, we need better public education - and probably far more funding for international research - in order to minimise the problems generated at scales usually beneath our gaze. When it comes down to the crunch, such organisms have a far greater impact on the global ecosystem than all the endangered pandas, elephants and rhinos combined. As for those lunar tardigrades, I wonder how they are getting on..?

Tuesday 30 July 2019

Anti-avian ingenuity: the numerous ways to minimise airport bird strikes

The widespread installation of wind turbines over the past three decades has generated a new ecologically unfriendly phenomenon, namely wild birds being killed by turbine sails. Although it could cause maintenance issues - and of course it's not good news for the birds themselves, the increasing density of air travel means far higher numbers of bird strikes are likely to occur in the much smaller turbines of jet engines, predominantly around airports.

I've previously written about how urban environments appear to generate wildlife somewhat smarter than rural equivalents. In contrast, airports seem to be a very poor choice for birds to inhabit, suggesting that the loss of natural environments coupled with the relatively undeveloped land around airport perimeters is causing birds to congregate in such precarious places.

It's somewhat ironic that such an environmentally unfriendly technology as air travel is inadvertently providing habitats for wild birds, but as urban sprawl increases animals are forced to live wherever they can find, even areas as seemingly unsuitable as runway taxiways and safety areas. As aircraft increase in size and speed but decrease in engine noise, it may be that aviation technology is contributing to the problem. In addition, waterfowl are attracted by the fresh water storage ponds found near runways for use in firefighting or drainage. Therefore, despite the noise, pollution, changes to local weather patterns and the obstacles in the form of the aircraft themselves, airports worldwide have found themselves becoming home to or visited by flocks of numerous bird species.

With over forty bird strikes every day, the cost to the global airline industry surpasses US$1 billion per year. So what is being done to reduce or remove this threat? The range of options is both ingenious and proof that birds are a formidable opponent, so here is a brief summary of popular methods:
  1. Removing food and water sources
  2. Audio repellents
  3. Chemical repellents
  4. Fake fire and pyrotechnics
  5. Baited traps
  6. Real and fake predators
  7. Removing and culling birds
1) Reducing bird foodstuffs involves a variety of techniques that aren't exactly the height of eco-friendliness. Any vegetation that might be a food source for local bird species, such as fruit- or seed-bearing trees and bushes may be removed. One step further is to replace any grass areas with a non-local variety that is less attractive to native birds.

A substantially less environmentally-friendly approach has been the regular use of insecticides to remove food sources for insectivorous birds and even distributing poison to remove potential raptor prey such as rabbits. Open water storage ponds within airports have been netted to prevent waterfowl from landing on them, but camouflage has also been developed specifically to minimise the attractiveness of large bodies of water.

2) Some airports such as Singapore's Changi play bird distress and/or raptor calls to scare birds away. A less subtle method has been the regular discharge of loud sounds generated by sonic cannon such as propane exploders. However, evidence suggests that birds soon become accustomed to these.

3) As an antithesis to the removal of food sources described above, adding chemical repellents to airport vegetation is now being used. Since 2010, New Zealand airports have been using a a locally-developed grass, which contains an endophyte fungus that reduces insect numbers and makes birds sick. This may prove to be easier to implement than natural chemical repellents imported from agribusiness, such as methyl anthranilate and anthraquinone, which require sophisticated, ongoing and locally-tailored programmes to maintain effectiveness.

4) Although it might sound high-tech, the use of wind-blown metallic streamers that simulate fire have been found to only fool birds for short periods. Likewise, the use of lasers, flare launchers and other live pyrotechnic devices serve to acclimatise local wildfowl to sudden noise and light. After all, the birds are already congregating around noisy aircraft for much of the day!

5) For airports frequented by raptors, live prey such as pigeons can serve as bait for sophisticated traps that notify staff once they have been triggered. The problem then is where to release the bird of prey so that it doesn't return to the original area.

6) The opposite of the previous method is to swamp the locality with trained predators, from dogs to raptors, in order to convince birds to nest elsewhere. The predators don't have to always be live, either: in the USA, fake coyotes have been used in wetlands to keep birds away from flight paths.

7) If all other methods fail, there are several time-consuming alternatives that could be used as a last resort. Firstly, birds can be caught and moved to regions far from airports. Naturally, this requires collaboration with wildlife experts and/or rangers. As a guaranteed solution, culling may also be allowed, although this is hardly going to endear most people to a sector that, essential though it is, has a rather poor environmental record.

One potential smart solution for civilian aviation has been developed for the Royal Netherlands Air Force, which involves constant radar monitoring of wildfowl so that pilots can adjust their take-off and landing flight paths. Apart from lack of the technology at airports, each airport would need long-term trials to determine the appropriate adjustments with regard to local bird populations and their behaviour.

From what I've learnt while researching this issue, there is probably no single solution suitable for all airports; a suite of methods is required, tailored for each one depending on the local landscape, climate and of course bird species - the latter being wily and unpredictable adversaries. Clearly, there's a long way to go if such drastic solutions as culling the birds themselves and poisoning the wider ecosystem are seen as valid options. It looks as if more research is required before the danger to both airliners and birds can be reduced, although I doubt if it could ever be completely eliminated; nature is just too unpredictable!


Sunday 23 June 2019

Spray and walk away? Why stratospheric aerosols could be saviours or destroyers

My first scientific encounters with aerosols weren't particularly good ones. In my early teens, I read that the CFC propellants used as aerosols were depleting the ozone layer. Therefore, tiny atmospheric particles had negative connotations for me from my formative years. This was further enforced by Carl Sagan and Richard Turco's 1990 book A Path Where No Man Thought: Nuclear Winter and the End of the Arms Race, which discussed the potentially devastating effects of high-altitude aerosol's around the world following a nuclear attack. Strike two against these pesky particles!

Of course aerosols aren't just man-made. The stratospheric dust particles generated following the Chicxulub impact event 66 million years ago are known to have been instrumental in the global climate disruption that wiped out the dinosaurs and many other life forms. This would have been in addition to the thousands of years of environmental changes caused by sulfur aerosols from the Deccan Traps supervolcano. Rather more recently, the Mount Tambora volcanic eruption in 1815 led to starvation and epidemics around the world for up to three years.

Now that our civilisation is generating a rapid increase in global temperatures, numerous solutions are being researched. One of the most recent areas involves reducing the amount of solar radiation reaching the Earth's surface. Several methods have been suggested for this, but this year sees a small-scale experiment to actually test a solution, namely seeding the atmosphere with highly reflective particles in an artificial recreation of a volcanic event. The Stratospheric Controlled Perturbation Experiment (SCoPEx) is a solar geoengineering project involving Harvard University that will use a balloon to release calcium carbonate in aerosol form at about twenty kilometres above the Earth's surface, analysing the local airspace the following day to assess the effects.

This experiment is controversial for several reasons. Firstly, it doesn't lead to any reduction in greenhouse gases and particulate pollutants; if anything, by sweeping the issue under a stratospheric rug, it could allow fossil fuel corporations to maintain production levels and reduce investment in alternatives. If the recent reports by meteorologists that natural and non-intentional man-made aerosols are already mitigating global warming, then the gross effects of heat pollution must be higher than realised!

Next, this sort of minute level of testing is unlikely to pinpoint issues that operational use might generate, given the chaotic nature of atmospheric weather patterns. To date, numerous computer simulations have been run, but bearing in mind how inaccurate weather forecasting is beyond ten days, nothing can be as accurate as the real thing. Therefore at what point could a test prove that the process is effective and safe enough to be carried out on a global scale? Possibly it might require such a large scale experiment that it is both research and the actual process itself!

The duration that the aerosols remain aloft is still not completely understood, hinting that regular replenishment would be essential. In addition, could the intentionally-polluted clouds capture greater amounts of water vapour, at first holding onto and then dropping their moisture so as to cause drought followed by deluge? Clouds cannot be contained within the boundaries of the testing nation, meaning other countries could suffer these unintended side-effects.

It may be that as a back-up plan, launching reflective aerosols into the stratosphere makes sense, but surely it makes much more sense to reduce greenhouse gas emissions and increase funding of non-polluting alternatives? The main emphasis from ecologists to date has been to remove human-generated substances from the environment, not add new ones in abundance. I'm all for thinking outside the box, but I worry that the only way to test this technique at a fully effective level involves such a large scale experiment as to be beyond the point of no return. Such chemical-based debacles as ozone depletion via chlorofluorocarbons (CFCs) prove that in just a matter of decades we can make profound changes to the atmosphere - and badly effect regions furthest removed from the source itself.  So why not encourage more reducing, reusing and recycling instead?

Monday 10 June 2019

Defrosting dangers: global warming and the biohazards under the ice

Despite frequent news reports on the thawing of polar and glacial ice, there appears to be less concern shown towards this aspect of climate change than many others. Perhaps this is due to so few humans living in these regions; lack of familiarity with something helps us to ignore its true importance. The most obvious effects of melting ice are said to be the increase in atmospheric carbon, rising sea levels and unpredictable weather patterns, but there is another threat to our species that is only just beginning to be noticed - and as yet has failed to generate any mitigation plans.

A report last year confirmed a frightening cause behind the deaths back in 2015 of approximately half the world's remaining saiga antelope population: thanks to warmer and more humid weather, a type of bacteria usually confirmed to their nose had spread to the antelopes' bloodstream. Although not the sort of news to attract much attention even from nature-lovers, this ecological David and Goliath scenario looks set to be repeated in colder environments around the globe. Microscopic and fungal life forms that have been trapped or dormant for long periods, possibly millennia, may be on the verge of escaping their frozen confines.

The various film adaptions of John W. Campbell's 1938 novella Who Goes There? show the mayhem caused by an alien organism that has escaped its icy tomb. The real-life equivalents to this fictional invader are unlikely to be of extra-terrestrial origin, but they could prove at least as perilous, should climate change allow them to thaw out. The problem is easy to state: there is an enormous amount of dormant microbial life trapped in ice and permafrost that is in danger of escaping back into the wider ecosystem.

In the first quarter of the Twentieth Century over a million reindeer were killed by anthrax, with subsequent outbreaks occurring sporadically until as late as 1993. Recent years have seen the death of both farmers and their cattle from infection related to the thawing of a single infected reindeer carcass. In various incidents in 2016, dozens of Siberian herders and their families were admitted to hospital while Russian biohazard troops were flown in to run the clean-up operations. One issue is that until recently the infected animals - domesticated as well as wild - have rarely been disposed of to the recommended safety standards. Therefore, it doesn't take much for reactivated microbes to spread into environments where humans can encounter them.

Of course, the numbers of people and livestock living near glaciers and the polar caps is relatively low, but there are enormous regions of permafrost that are used by herders and hunters. Meltwater containing pathogens can get into local water supplies (conventional water treatment doesn't kill anthrax spores), or even reach further afield via oceans - where some microbes can survive for almost two years. The record high temperatures in some of the Northern Hemisphere's permafrost zones are allowing the spread of dangerous biological material into regions that may not have seen them for centuries - or far longer.

Decades-old anthrax spores aren't the only worry. Potential hazards include the smallpox virus, which caused a Siberian epidemic in the 1890s and may be able to survive in a freeze-dried state in victim's corpses before - however unlikely - reviving due to warmer temperatures. In addition, it should be remembered that many of the diseases that infect Homo sapiens today only arose with the development of farming, being variants of bacteria and viruses that transferred across from our domestic livestock.

This would suggest that permafrost and ice sheets include ancient microbes that our species hasn't interacted with for centuries - and which we may therefore have minimal resistance to. Although natural sources of radiation are thought to destroy about half of a bacteria's genome within a million years, there have been various - if disputed - claims of far older bacteria being revived, including those found in salt crystals that are said to be 250 million years old. In this particular case, their location deep underground is said to have minimised cosmic ray mutations and thus ensured their survival. Sounds like one for the Discovery Channel if you ask me, but never say never...

Even if this improbable longevity turns out to be inaccurate, it is known that dormant spore-forming bacteria such those leading to tetanus and botulism could, like anthrax, be revived after decades of containment in permafrost. Fungal spores are likewise known to survive similar interments; with amphibian, bat and snake populations currently declining due to the rapid spread of fungal pathogens, the escape of such material shouldn't be taken lightly.

So can anything be done to prevent these dangers? Other than reversing the increase in global temperatures, I somehow doubt it. Even the location of some of the mass burials during twentieth century reindeer epidemics have been lost, meaning those areas cannot be turned into no-go zones. Anthrax should perhaps be thought of as only one of a suite of biohazards that melting permafrost may be about to inflict on a largely uninformed world. The death of some remote animals and their herders may not earn much public sympathy, but if the revived pathogens spread to the wider ecosystem, there could be far more at stake. Clearly, ignorance is no protection from the microscopic, uncaring dangers now waking up in our warming world.

Tuesday 28 May 2019

Praying for time: the rise and fall of the New Zealand mantis


While the decline of the giant panda, great apes and various cetacean species have long garnered headlines, our scale prejudice has meant invertebrates have fared rather less well. Only with the worrying spread of colony collapse disorder (CCD) in bee hives have insect-themed stories gained public attention; yet most of the millions of other small critters remain on the sidelines. I've often mentioned that overlooking these small marvels could backfire on us, considering we don't know the knock-on effect their rapid decline - and possible near-future extinction - would have on the environment we rely on.

One such example here in New Zealand is our native praying mantis Orthodera novaezealandiae, which for all we know could be a key player in the pest control of our farms and gardens. Mantid species are often near the apex of invertebrate food webs, consuming the likes of mosquitoes, moth caterpillars and cockroaches. I admit that they are not exactly discriminating and will also eat useful species such as ladybirds or decorative ones like monarch butterflies. However, they are definitely preferable to pesticides, a known cause of CCD today and an acknowledged factor of insect decline since Rachel Carson's pioneering 1962 book Silent Spring.

Of course, we shouldn't just support species due to their usefulness: giant pandas aren't being conserved for any particular practical benefit. From a moral perspective it's much easier to convince the public that we should prevent their extinction than that of the rather uncuddly mantis. We still know so little about many insect species it's difficult to work out which need to be saved in order to preserve our agribusiness (versus all the others that of course should be preserved regardless). I’m not averse to careful extermination of plagues of locusts or mosquitoes, but indiscriminate destruction due to greed or stupidity is well, stupid, really.

Down but not out: the New Zealand praying mantis Orthodera novaezealandiae



Back to O. novaezealandiae. I've only seen New Zealand's sole native mantis species three times in the 'wild': twice in my garden in the past two years and once in my local reserve before that. What is particularly interesting is that since initial descriptions in the 1870's, hypotheses regarding its origin appear to have evolved due to patriotic trends as much as to factual evidence. Late Nineteenth Century accounts of its spread suggest an accidental importation from Australia by European sailing ship, since it is a clumsy, short-range flier and seabirds are unlikely to carry the insects - and certainly not their cemented oothecae (egg sacks) - on their feet.

However, some Victorian naturalists thought the insect was incorporated into Maori tradition, implying a precolonial existence. In contrast, A.W.B.Powell's 1947 book Native Animals of New Zealand refers to the native mantis as Orthodera ministralis (which today is only used to describe the Australian green mantis) and the author states it may well be a recent arrival from across the Tasman Sea. So the native species may not be particularly native after all! I find this fascinating, insomuch as it shows how little we understand about our local, smaller scale, wildlife when compared to New Zealand's birds, bats and even reptiles.

The specimens in my garden have lived up to their reputation for being feisty: they seem to size you up before launching themselves directly towards you, only for their wings to rapidly falter and force the insect into an emergency landing. After the most recent observation, I looked around the outside of the house and found three oothecae, two of which were under a window sill built in 2016. These finds are cheering, as it means that at least in my neighbourhood they must be holding their own.

Perhaps their chief enemy these days is the invasive Miomantis caffra. This inadvertently-introduced South African mantis was first seen in 1978 and is rapidly spreading throughout New Zealand's North Island. The intruder - frequently spotted in my garden - has several advantages over O. novaezealandiae: firstly, it is able to survive through winter. Second, it produces rather more nymphs per ootheca; combined with hatching over a longer period this presumably leads to a larger numbers of survivors per year. In addition, and most unfortunately, the native male appears to find the (cannibalistic) South African female more attractive than the female of its own species, frequently resulting in its own demise during mating.

Humans too have further aided the decline of the native mantis with the accidental introduction of parasitic wasps and widespread use of pesticides. After less than a century and a half of concerted effort, European settlers have managed to convert a large proportion of the best land in this corner of the Pacific into a facsimile of the English countryside - but at what cost to the local fauna and flora?

Working to the old adage that we won't save what we don't love and cannot love what we don't know, perhaps what is really required is an education piece disguised as entertainment. Promoting mammals in anthropomorphic form has long been a near-monopoly of children's literature (think Wind in the Willows) but perhaps it is about time that invertebrates had greater public exposure too. Gerald Durrell's 1956 semi-autobiographical best-seller My Family and Other Animals includes an hilarious battle in the author's childhood bedroom between Cicely the praying mantis and the slightly smaller Geronimo the gecko, with the lizard only winning after dropping its tail and receiving other injuries. Perhaps a contemporary writer telling tales in a similar vein might inspire more love for these overlooked critters before it is too late. Any takers?


Monday 13 May 2019

Which side are you on? The mysterious world of brain lateralisation

There are many linguistic examples of ancient superstitions still lurking in open sight. Among the more familiar are sinister and dexterous, which are directly related to being left- and right-handed respectively. These words are so common-place that we rarely consider the pre-scientific thinking behind them. I was therefore interested last year to find out that I am what is known as 'anomalous dominant'. Sounds ominous!

The discovery occurred during my first archery lesson where - on conducting the Miles test for ocular dominance - I discovered that despite being right-handed, I am left-eye dominant. I'd not heard of cross-dominance before, so I decided to do some research. As Auckland Central City Library didn't have any books on the subject I had to resort to the Web, only to find plenty of contradictory information, often of dubious accuracy, with some sites clearly existing so as to sell their strategies for overcoming issues related to the condition.

Being cross-dominant essentially means it takes longer for sensory information to be converted into physical activity, since the dominant senses and limbs must rely on additional transmission of neurons between the hemispheres of the brain. One common claim is that the extra time this requires has an effect on coordination and thus affects sporting ability. I'm quite prepared to accept that idea as I've never been any good at sport, although I must admit I got used to shooting a bow left-handed much quicker than I thought; lack of strength on my left side proved to be a more serious issue than lack of coordination due to muscle memory.

Incidentally, when I did archery at school in the 1980s, no mention was ever made about testing for eye dominance and so I shot right-handed! I did try right-handed shooting last year, only to find that I was having to aim beyond the right edge of the sight in order to make up for the parallax error caused by alignment of the non-dominant eye.

Research over the past century suggests children with crossed lateralisation could suffer a reduction in academic achievement or even general intelligence as a direct result, although a 2017 meta-analysis found little firm evidence to support this. Archery websites tend to claim that the percentage of people with mixed eye-hand dominance is around 18%, but other sources I have found vary anywhere from 10% to 35%. This lack of agreement over so fundamental a statistic suggests that there is still much research to be done on the subject, since anecdotal evidence is presumably being disseminated due to lack of hard data.

There is another type of brain lateralisation which is colloquially deemed ambidextrous, but this term covers a wide range of mixed-handedness abilities. Despite the descriptions of ambidextrous people as lucky or gifted (frequently-named examples include Leonardo da Vinci, Beethoven, Gandhi and Albert Einstein) parenting forums describe serious issues as a result of a non-dominant brain hemisphere. Potential problems include dyspraxia and dyslexia, ADHD, even autism or schizophrenia.

While the reporting of individual families can't be considered of the same quality as professional research, a 2010 report by Imperial College London broadly aligns with parents' stories. 'Functional disconnection syndrome' has been linked to learning disabilities and slower physical reaction times, rooted in the communications between the brain's hemispheres. There also seems to be evidence for the opposite phenomenon, in which the lack of a dominant hemisphere causes too much communication between left and right sides, generating noise that impedes normal mental processes.

What I would like to know is why there is so little information publicly available? I can only conclude that this is why there is such a profusion of non-scientific (if frequently first-hand) evidence. I personally know of people with non-dominant lateralisation who have suffered from a wide range of problems from dyslexia to ADHD, yet they have told me that their general practitioners failed to identify root causes for many years and suggested conventional solutions such as anti-depressants.

Clearly this is an area that could do with much further investigation; after all, if ambidexterity is a marker for abnormal brain development that arose in utero (there is some evidence that a difficult pregnancy could be the root cause) then surely there is clearly defined pathway for wide scale research? This could in turn lead to a reduction in people born with these problems.

In the same way that a child's environment can have a profound effect on their mental well-being and behaviour, could support for at-risk pregnant women reduce the chance of their offspring suffering from these conditions? I would have thought there would be a lot to gain from this, yet I can't find evidence of any medical research seeking a solution. Meanwhile, why not try the Miles test yourself and find out where you stand when it comes to connectivity between your brain, senses and limbs?

Tuesday 23 April 2019

Lift to the stars: sci-fi hype and the space elevator

As an avid science-fiction reader during my childhood, one of the most outstanding extrapolations for future technology was that of the space elevator. As popularised in Arthur C. Clarke's 1979 novel, The Fountains of Paradise, the elevator was described as a twenty-second century project. I've previously written about near-future plans for private sector spaceflight, but the elevator would be a paradigm shift in space transportation: a way of potentially reaching as far as geosynchronous orbit without the need for rocket engines.

Despite the novelty of the idea: a tower stretching from Earth - or indeed any planet's surface - to geosynchronous orbit and beyond; the first description dates back to 1895 and writings of the Russian theoretical astronautics pioneer Konstantin Tsiolkovsky. Since the dawn of the Space Age engineers and designers in various nations have either reinvented the elevator from scratch or elaborated on Tsiolkovsky's idea.

There have of course been remarkable technological developments over the intervening period, with carbyne, carbon nanotubes, tubular carbon 60 and graphene seen as potential materials for the elevator, but we are still a long way from being able to build a full-size structure. Indeed, there are now known to be many more impediments to the space elevator than first thought, including a man-made issue that didn't exist at the end of the nineteenth century. Despite this, there seems to be a remarkable number of recent stories about elevator-related experiments and the near-future feasibility of such a project.

An objective look at practical - as opposed to theoretical - studies show that results to date have been decidedly underwhelming. The Space Shuttle programme started tethered satellite tests in 1992. After an initial failure (the first test achieved a distance of a mere 256 metres), a follow up six years later built a tether that was a rather more impressive twenty kilometres long. Then last year the Japanese STARS-me experiment tested a miniature climber component in orbit, albeit at a miniscule distance of nine metres. Bearing in mind that a real tower would be over 35,000 kilometres long, it cannot be argued that the technology is almost available for a full-scale elevator.

This hasn't prevented continuous research by the International Space Elevator Consortium (ISEC), which was formed in 2008 to promote the concept and the technology behind it. It's only to be expected that fans of the space elevator would be enthusiastic, but to my mind their assessment that we are 'tech ready' for its development seems to be optimistic to the point of incredulity.

A contrasting view is that of Google X's researchers, who mothballed their space elevator work in 2014 on the grounds that the requisite technology will not be available for decades to come. While the theoretical strength of carbon nanotubes meets the requirements, the total of cable manufactured to date is seventy centimetres, showing the difficulties in achieving mass production. A key stopping point apparently involves catalyst activity probability; until that problem is resolved, a space elevator less than one metre in length isn't going to convince me, at least.

What is surprising then is that in 2014, the Japanese Obayashi Corporation published a detailed concept that specified a twenty-year construction period starting in 2030. Not to be outdone, the China Academy of Launch Vehicle Technology released news in 2017 of a plan to actually build an elevator by 2045, using a new carbon nanotube fibre. Just how realistic is this, when so little of the massive undertaking has been prototyped beyond the most basic of levels?

The overall budget is estimated to be around US$90 billion, which suggests an international collaboration in order to offset the many years before the completed structure turns a profit. In addition to the materials issue, there are various other problems yet to be resolved. Chief among these are finding a suitable equatorial location (an ocean-based anchor has been suggested), capturing an asteroid for use as a counterweight, dampening vibrational harmonics, removing space junk, micrometeoroid impact protection and shielding passengers from the Van Allen radiation belts. Clearly, just developing the construction material is only one small element of the ultimate effort required.

Despite all these issues, general audience journalism regarding the space elevator - and therefore the resulting public perception - appears as optimistic as the Chinese announcement. How much these two feedback on each other is difficult to ascertain, but there certainly seems to be a case of running before learning to walk. It's strange that China made the claim, bearing in mind how many other rather important things the nation's scientists should be concentrating on, such as environmental degradation and pollution.

Could it be that China's STEM community have fallen for the widespread hype rather than prosaic reality? It's difficult to say how this could be so, considering their sophisticated internet firewall that blocks much of the outside world's content. Clearly though, the world wide web is full of science and technology stories that consist of parrot fashion copying, little or no analysis and click bait-driven headlines.

A balanced, in-depth synthesis of the relevant research is often a secondary consideration. The evolutionary biologist Stephen Jay Gould once labelled the negative impact of such lazy journalism as "authorial passivity before secondary sources." In this particular case, the public impression of what is achievable in the next few decades seems closer to Hollywood science fiction than scientific fact.

Of course, the irony is that even the more STEM-minded section of the public is unlikely to read the original technical articles in a professional journal. Instead, we are reliant on general readership material and the danger inherent in its immensely variable quality. As far as the space elevator goes (currently, about seventy centimetres), there are far more pressing concerns requiring engineering expertise; US$90 billion could, for example, fund projects to improve quality of life in the developing world.

That's not to say that I believe China will construct a space elevator during this century, or that the budget could be found anywhere else, either. But there are times when there's just too much hype and nonsense surrounding science and not enough fact. It's easy enough to make real-world science appear dull next to the likes of Star Trek, but now more than ever we need the public to trust and support STEM if we are to mitigate climate change and all the other environmental concerns.

As for the space elevator itself, let's return to Arthur C. Clarke. Once asked when he thought humanity could build one, he replied: "Probably about fifty years after everybody quits laughing." Unfortunately, bad STEM journalism seems to have joined conservatism as a negative influence in the struggle to promote science to non-scientists. And that's no laughing matter.

Monday 1 April 2019

The day of the dolphin: covert cetaceans, conspiracy theories and Hurricane Katrina

One of the late, great Terry Pratchett's Discworld novels mentions a failed attempt by King Gurnt the Stupid to conduct aerial warfare using armoured ravens. Since real life is always stranger than fiction, just how harebrained are schemes by armed forces to utilise animals in their activities?

Large mammals such as horses and elephants have long been involved in the darker aspects of human existence, but the twentieth century saw the beginnings of more sophisticated animals-as-weapons schemes, including for example, research into the use of insects as disease vectors.

Some of the fruitier research projects of the 1960s saw the recruitment of marine mammals, reaching an apotheosis - or nadir - in the work of John Lilly. A controversial neuroscientist concerned with animal (and extraterrestrial) communication, Lilly even gave psychedlic drugs to dolphins as part of attempts to teach them human language and logic: go figure!

Whether this work was the direct inspiration for military programmes is uncertain, but both the Soviet and United States navies sought to harness the intelligence and learning capabilities of marine mammals during the Cold War. Besides bottlenose dolphins, sea lions were also trained in activities such as mine detection, hardware retrieval and human rescue. Although the Russians are said to have discontinued their research some years ago, the US Navy's Marine Mammal Research Program is now in its sixth decade and has funding up until at least next year.

Various sources claim that there is a classified component to the program headquartered in San Diego under the moniker the Cetacean Intelligence Mission. Although little of any value is known for certain, researchers at the University of Texas at Austin have been named as one of the groups who have used naval funding to train dolphins - plus design a dolphin equipment harness - for underwater guard duty. A more controversial yet popular claim is for their use as weapon platforms involving remote-controlled knock-out drug dart guns. If this all sounds a bit like Dr. Evil's request for "sharks with lasers" then read on before you scoff.

In the aftermath of the devastation caused by Hurricane Katrina in August 2005, it was discovered that eight out of fourteen bottlenose dolphins that were housed at the Marine Life Oceanarium in Gulfport, Mississippi, had been swept out to sea. Although later recovered by the United States Navy, this apparently innocent operation has a bearing on a similar escape that was given much greater news coverage soon after the hurricane.

Even respected broadsheet newspapers around the world covered the story generated by a US Government leak that thirty-eight United States Navy dolphins had also gotten free after their training ponds near Lake Pontchartrain, Louisiana, were inundated by Hurricane Katrina. Apart from the concerns of animal rights groups that: (a) dolphins shouldn't be used as weapons platforms; and (b) how would they cope in the open ocean of the Gulf of Mexico (vis-a-vis its busy shipping lanes)? another issue was the notion that the dolphins might attack civilian divers or vessels.

It would be quite easy here to veer into the laughable fantasies that the Discovery Channel tries to pass off as genuine natural history, if it weren't for a string of disconcerting facts. The eight dolphins that escaped from the Marine Life Oceanarium were kept by the navy for a considerable period before being returned to Mississippi. This was explained at the time as a health check by navy biologists, but there is a more sinister explanation: what if the dolphins were being examined to ensure that they were not military escapees from Lake Pontchartrain?

The latter half of 2005 into early 2006 saw the resumption of fishing in the Gulf of Mexico, following the destruction of almost ninety per cent of the region's commercial fleet in the hurricane. However, many of the smaller boats that did make it back to sea returned to port with unusual damage, or in some cases, had to be towed after failing to make it home under their own power. Much of this was put down to hasty repairs in order to resume fishing - a key component of the local economy - as soon as possible.

Reports released by boat yards during this period show inexplicable damage to rudders and propellers, mainly to shrimp boats. Fragments of metal, plastic and pvc were recovered in a few cases, causing speculation as to where this material had come from. The National Marine Fisheries Service requested access to the flotsam, which was subsequently lost in the chain of bureaucracy; none of the fragments have been seen since. It may not be on the scale of Roswell, but someone in the US military seems to be hiding something here.

It's been over half a century since Dr. Lilly's experiments inspired such fictional cetacean-centred intrigue as The Day of the Dolphin. Therefore, there has been plenty of time for conspiracy theorists to cobble together outlandish schemes on the basis of threadbare rumours. What is certain is that the enormous reduction in the region's fishing that followed in the wake of Hurricane Katrina would have been a boon for the Gulf of Mexico's fish stocks. This would presumably have carried on up the food chain, allowing dolphin numbers to proliferate throughout 2006 and beyond.

Whether the US Navy was able to recover some or all of its underwater army is not known, but it doesn't take much imagination to think of the dolphins enjoying their freedom in the open ocean, breaking their harnesses upon the underside of anchored fishing vessels, determined to avoid being rounded up by their former keepers. The Gulf in the post-Katrina years would have been a relative paradise for the animals compared to their military careers.

Although the United States Navy is said to have spent less than $20 million dollars per annum on the Marine Mammal Research Program, a mere drop in the ocean (you know that one's irresistible) compared to the mega-budgets of many Department of Defense projects, the low cost alone suggests the value of attempting to train dolphins for military purposes. Perhaps the truth will emerge one day, once the relevant files are declassified. Or alternatively, a new John Lilly may come along and be finally able to translate dolphinese. In which case, what are the chances that descendants of the Lake Pontchartrain escapees will recall the transition from captivity to freedom with something along the lines of "So long, and thanks for all the fish!"

Wednesday 20 March 2019

My family & other animals: what is it that makes Homo sapiens unique?

It's a curious thing, but I can't recall ever having come across a comprehensive assessment of what differentiates Homo sapiens from all other animals. Hence this post is a brief examination on what I have found out over the years. I originally thought of dividing it into three neat sections, but quickly discovered that this would be, as Richard Dawkins once put it, 'a gratuitously manufactured discontinuity in a continuous reality.' In fact, I found a reasonably smooth gradation between these segments:
  1. Long-held differences now found to be false
  2. Possibly distinctions - but with caveats
  3. Uniquely human traits
Despite the carefully-observed, animal-centered stories of early civilisations - Aesop's fable of The Crow and the Pitcher springs to mind - the conventional wisdom until recently was that animals are primarily automatons and as such readily exploitable by humanity. Other animals were deemed vastly inferior to us by a question of kind, not just degree, with a complete lack of awareness of themselves as individuals.

The mirror test developed in 1970 has disproved that for a range of animals, from the great apes to elephants, dolphins to New Caledonian crows. Therefore, individuals of some species can differentiate themselves from their kin, leading to complex and fluid hierarchies within groups - and in the case of primates, some highly Machiavellian behaviour.

Man the tool-maker has been a stalwart example of humanity's uniqueness, but a wide range of animals in addition to the usual suspects (i.e. great apes, dolphins and Corvidae birds) are now known to make and use tools on a regular basis. Examples include sea otters, fish, elephants, and numerous bird species, the latter creating everything from fish bait to insect probes. Even octopuses are known to construct fences and shelters, such as stacking coconut shells - but then they do have eight ancillary brains in addition to the main one!

We recognise regional variations in human societies as the result of culture, but some animal species also have geographically-differentiated traits or tools that are the obvious equivalent. Chimpanzees are well known for their variety of techniques used in obtaining food or making tools. These skills are handed down through the generations, remaining different to those used in neighbouring groups.

Interestingly, farming has really only been adopted by the most humble of organisms, namely the social insects. Ants and termites farm aphids and fungi in their complex, air-conditioned cities that have more than a touch of Aldous Huxley's Brave New World about them; in a few species, the colonies may even largely consist of clones!

Although many animals construct nests, tunnels, dams, islets or mounds, these appear to serve purely functional purposes: there is no equivalent of the human architectural aesthetic. Octopus constructions aside, birds for example will always build a structure that resembles the same blueprint used by the rest of their kind.

Many species communicate by aural, gestural or pheremonal languages, but only humans can store information outside of the body and across generations living at different times. Bird song might sound pretty, but again, this appears to be a series of basic, hard-wired, communications. Conversely, humpback whale song may contain artistic values but we just don't know enough about it to judge it in this light.

Birds and monkeys are happy to hoard interesting objects, but there is little aesthetic sense in animals other than that required to identify a high-quality mate. In contrast, there is evidence to suggest that other species in the hominin line, such as Neanderthals and Homo erectus, created art in forms recognisable today, including geometric engravings and jewellery.

Some of our ancestor's earliest artworks are realistic representations, whereas when armed with a paint brush, captive chimps and elephants produce abstract work reminiscent of pre-school children. We should remember that only since the start of the Twentieth Century has abstract art become an acceptable form for professional artists.

Jane Goodall's research on the Gombe chimps shows that humans are not the only animal to fight and kill members of the same species for reasons other than predation or rivalry. Sustained group conflict may be on a smaller scale and have less rules than sanctioned warfare, but it still has enough similarity to our own violence to say that humanity is not its sole perpetrator. One interesting point is that although chimps have been known to use sharpened sticks to spear prey, they haven't as yet used their weapons on each other.

Chimpanzees again have been shown to empathise with other members of their group, for example after the death of a close relative. Altruism has also been observed in the wild, but research suggests there is frequently another motive involved as part of a long-term strategy. This is countered with the notion that humans are deemed able to offer support without the expectation of profit or gain in the future; then again, what percentage of such interactions are due to a profitless motivation is open to suggestion.

A tricky area is to speculate on the uniqueness of ritual to Homo sapiens. While we may have usurped the alpha male position in domesticated species such as dogs, their devotion and loyalty seems too far from deity worship to be a useful comparison; certainly the idea of organised religion has to be alien to all other species? Archaeological evidence shows what appears to be Neanderthal rituals centred on cave bears, as well as funereal rites, but the DNA evidence for interbreeding with modern humans doesn't give enough separation to allow religion to be seen as anything other than a human invention. What is probably true though is that we are the only species aware of our own mortality.

One area in which humans used to be deemed sole practitioners is abstract thought, but even here there is evidence that the great apes have some capability, albeit no greater than that of a pre-schooler. Common chimps and bonobos raised in captivity have learnt - in some cases by observation, rather than being directly taught - how to use sign language or lexigrams to represent objects and basic grammar. It's one thing to see a button with a banana on it and to learn that pressing it produces a banana, but to receive the same reward for pressing an abstract symbol shows a deeper understanding of relationship and causality.

A consideration of a potential future is also shared with birds of the Corvidae family, who are able to plan several steps ahead. Where humans are clearly far ahead is due to a gain in degree rather than just kind. Namely, we have the ability to consider numerous future paths and act accordingly; this level of sophistication and branch analysis appears to be uniquely human, allowing us to cogitate about possibilities in the future that might occur - or may never be possible. Both prose and poetic literature are likely to be uniquely human; at least until we can decipher humpback whale song.

Finally, there is science, possibly the greatest of human inventions. The multifarious aspects of the scientific endeavour, from tentative hypothesis to experimentation, advanced mathematics to working theory, are unlikely to be understood let alone attempted by any other species. The combination of creative and critical thinking, rigour and repetition, and objectivity and analysis require the most sophisticated object in the known universe, the human brain. That's not to say there aren't far more intelligent beings out there somewhere, but for now there is one clear activity that defines us as unique. And thank goodness it isn't war!

Sunday 10 March 2019

Buzzing away: are insects on the verge of global extinction?

It's odd how some of these posts get initiated. For this particular one, there were two driving factors. One was passing a new house on my way to work where apart from the concrete driveway, the front garden consisted solely of a large square of artificial grass; the owners are clearly not nature lovers! The second inspiration was listening to a BBC Radio comedy quiz show, in which the panel discussed the recent report on global insect decline without being able to explain why this is important, apart from a vague mention of pollination.

Insect biologists have long sung the praises of these unrewarded miniature heroes, from JBS Haldane's supposed adage about God being "inordinately fond of stars and beetles" to EO Wilson's 1987 speech that described them as "the little things that run the world." In terms of numbers of species and individuals, invertebrates, especially insects, are the great success story of macroscopic life on our planet. So if they are in serious decline, does that spell trouble for Homo sapiens?

The new research claims that one-third of all insect species are currently endangered, extrapolating to wholesale extinction for the class Insecta over the next century. Although the popular press has started using evocative phrases such as "insect genocide" and even "insectageddon", just how accurate are these dramatic claims?

The United Nation's Red List currently describes three hundred insect species as critically endangered and a further seven hundred as vulnerable, but this is a tiny proportion of the total of...well, at lot more, at any rate. One oft-quoted figure is around one million insect species, although entomologists have estimated anywhere from 750,000 up to 30 million, with many species still lacking formal scientific identification. The hyperbole could therefore easily sound like unnecessary scaremongering, until you consider the details.

The new report states that butterflies and caddis flies are suffering the greatest decline, while cockroaches - as anyone who has faced a household infestation of them will know, they are likely to remain around until the end of world - and flies are the least affected orders. So, to paraphrase Monty Python, what have the insects ever done for us?

Pollination is of course of key importance, to both horticulture and un-managed 'wild' environments. Insects are near the base of many food webs; if numbers were much reduced, never mind removed, the impact on the rest of the ecosystem would be catastrophic. With the human population set to top ten billion in thirty years' time, we require ever larger regions of productive land for agriculture. They may be small at an individual level, but arthropods in general total about seventeen times the mass of all us H. sapiens. Insects replenish the soil, as alongside bacteria they break down dead matter and fecal material. So important is this latter function that New Zealand has been trialling non-native dung beetles to aid cattle farmers.

One key way to save fresh water and lessen the generation of the potent greenhouse gas methane is to reduce meat consumption in favour of insect protein. If insects are no longer around, then that will be an additional challenge in reducing environmental degradation. This of course also ignores the fact that insects are already a component in the diet of many developing nations. Last year I wrote about how scientists have been creating advanced materials derived from animals. Again, we are shooting ourselves in the foot if we allow this ready-made molecular library to be destroyed.

What is responsible for this global decline? Perhaps unsurprisingly, it turns out to be the usual suspects. Agricultural chemicals including pesticides have been associated with honey-bee colony collapse disorder (not incidentally, some tests have found honey samples with neonicotinoids - the mostly widely-used insecticides - exceeding the recommended human dosage) so clearly the same culprit is affecting other insects. Fresh waterways, home to many aquatic insect species, are frequently as polluted as the soil, either due to agricultural run-off or industrial contaminants. Wild landscapes are being converted with great haste into farm land and urban sprawl, with an obviously much-reduced biota.

Climate change is playing its part, with soil acidity increasing just as it is in the oceans. Even areas as remote as central Australia have seen marked decreases in insects as higher temperatures and lower rainfall outpaces the ability to adapt to the new conditions. I've often mentioned the role of invasive species in the decimation of indigenous vertebrates, but insects are equally prone to suffer from the arrival of newcomers. Although New Zealand has very strict biosecurity protocols, the likes of Queensland fruit flies and brown marmorated stink bugs are still occasionally found in or around ports of entry.

Many nations have no such procedures in place, resulting in local species being out-competed or killed by introduced species or pathogens to which they have no resistance. Until fairly recently, even New Zealand had a lax attitude to the issue, resulting in the decline of native species such as carabid beetles. When I conducted a brief survey of my garden in 2017 I found that one-third of the insect species were non-native, most of these being accidental imports since the arrival of European settlers.

If insects are so vital to our survival, why has there been so little interest in their well-being? There are some fairly obvious suggestions here. Firstly, at least in Western cultures, insects have been deemed dirty, ugly things that can be killed without a second thought. Wasps, ants and cockroaches in particular are seen in this light of being unwelcome pests, with typical insect-related phrases including "creepy crawlies" and "don't let the bed bugs bite".

It's fairly well-known that malaria-carrying mosquitoes are the most dangerous animals for us humans in terms of fatalities. The widespread outbreaks of the Zika virus haven't done them any favours either. As Brian Cox's television series Wonders of Life showed, their small size has given them veritable super powers compared to us lumbering mammals, from climbing up sheer surfaces (as a praying mantis was doing a few nights' ago on my window) to having amazing strength-to-weight ratios. All in all, insects are a bit too alien for their own good!

Clearly, scale prejudice is also a key factor. On a recent trip to Auckland Central Library I only found one book on insects versus dozens on birds. Photographic technology has been a double-edged sword when it comes to giving us a clearer picture of insects: close-ups are often greeted with revulsion, yet until Sir David Attenborough's 2005 BBC series Life in the Undergrowth, there was little attempt to film their behaviour with the same level of detail as say, the lions and antelopes of the Serengeti. It should also be mentioned that when Rachel Carson's ground-breaking book about the dangers of pesticides, Silent Spring, was published in 1962, the resulting environmentalism was largely in support of birds rather than insects.

Among all this doom and gloom, are there any ways to prevent it? One thing is for certain, and that is that it won't be easy. The agricultural sector would have to make drastic changes for a start, becoming much smarter in the use of chemicals and be held responsible for the local environment, including waterways. Vertical farming and other novel techniques could reduce the need for new agricultural land and water usage, but developing nations would be hard-pressed to fund these themselves.

Before any major undertaking, there's going to have to be either a fundamental crisis, such as food shortages, in a rich nation or a massive public relations exercise to convince people to consider insects in the same light as giant pandas or dolphins. This is not going to be easy, but as David Attenborough put it: "These small creatures are within a few inches of our feet, wherever we go on land - but often, they're disregarded. We would do very well to remember them."

Sunday 24 February 2019

Core solidification and the Cambrian explosion: did one begat the other?

Let's face it, we all find it easier to live our lives with the help of patterns. Whether it's a daily routine or consultation of an astrology column (insert expletive of choice here) - or even us amateur astronomers guiding our telescopes via the constellations - our continued existence relies on patterns. After all, if we didn't innately recognise our mother's face or differentiate harmless creatures from the shape of a predator, we wouldn't last long. So it shouldn't be any surprise that scientists also rely on patterns to investigate the complexities of creation.

Richard Feynman once said that a scientific hypothesis starts with a guess, which should perhaps be taken with a pinch of salt. But nonetheless scientists like to use patterns when considering explanations for phenomena; at a first glance, this technique matches the principle of parsimony, or Occam's Razor, i.e. the simplest explanation is usually the correct one - excluding quantum mechanics, of course!

An example in which a potential pattern was widely publicised prior to confirmation via hard data was that of periodic mass extinction, the idea being that a single cause might be behind the five greatest extinction events. Four years after Luis Alvarez's team's suggestion that the 66 million year-old Chicxulub impactor could have caused the Cretaceous-Paleogene extinction, paleontologists David Raup and Jack Sepkoski published a 1984 paper hypothesising extinctions at regular intervals due to extraterrestrial impacts.

This necessitated the existance of an object that could cause a periodic gravitational perturbation, in order for asteroids and comets to be diverted into the inner solar system. The new hypothesis was that we live in binary star system, with a dwarf companion star in an highly elliptical, 26 million-year orbit. This would be responsible for the perturbation when it was at perihelion (i.e. closest approach to the sun).

What's interesting is that despite the lack of evidence, the hypothesis was widely publicised in popular science media, with the death-dealing star being appropriately named Nemesis after the Greek goddess of retribution. After all, the diversification of mammals was a direct result of the K-T extinction and so of no small importance to our species.

Unfortunately, further research has shown that mass extinctions don't fall into a neat 26 million-year cycle. In addition, orbiting and ground-based telescopes now have the ability to detect Nemesis and yet have failed to do so. It appears that the hypothesis has reached a dead end; our local corner of the universe probably just isn't as tidy as we would like it to be.

Now another hypothesis has appeared that might appear to belong in a similar category of neat pattern matching taking precedence over solid evidence. Bearing in mind the importance of the subject under scrutiny - the origin of complex life - are researchers jumping the gun in order to gain kudos if proven correct? A report on 565 million year-old minerals from Quebec, Canada, suggests that at that time the Earth's magnetic field was less than ten percent of what it is today. This is considerably lower than earlier estimate of forty percent. Also, the magnetic poles appear to have reversed far more frequently during this period than they have since.

As this is directly related to the composition of the Earth's core, it has led to speculation that the inner core was then in the final stage of solidification. This would have caused increased movement in the outer liquid, iron-rich core, and thus to the rapid generation of a much higher magnetic field. In turn, the larger the magnetic field dipole intensity, the lower the amount of high energy particles that reach the Earth's surface, both cosmic rays and from our own sun. What is particularly interesting about this time is that it is just (i.e. about twenty million years) prior to the so-called Cambrian explosion, following three billion years or so of only microbial life. So were these geophysical changes responsible for a paradigm shift in evolution? To confirm, we would need to confirm the accuracy of this apparently neat match.

It's well known that some forms of bacteria can survive in much higher radiation environments than us larger scale life forms; extremophiles such as Deinococcus radiodurans have even been found thriving inside nuclear reactors. Therefore it would seem obvious that more complex organisms couldn't evolve until the magnetic field was fairly high. But until circa 430 million years ago there was no life on land (there is now evidence that fungi may have been the first organisms to survive in this harsh environment). If all life was therefore in the sea, wouldn't the deep ocean have provided the necessary radiation protection for early plants and animals?

By 600 million years ago the atmospheric oxygen content was only about ten percent of today's value; clearly, those conditions would not have been much use to pretty much any air-breathing animals we know to have ever existed. In addition, the Ediacaran assemblage, albeit somewhat different from most subsequent higher animals, arose no later than this time - with chemical evidence suggesting their development stretched back a further 100 million years. Therefore the Canadian magnetic mineral evidence seems to be too late for the core solidification/higher magnetic field generation to have given the kick start to a more sophisticated biota.

In addition, we shouldn't forget that it is the ozone layer that acts as an ultraviolet shield; UVB is just as dangerous to many organisms, including near-surface marine life, as cosmic rays and high-energy solar particles. High-altitude ozone is thought to have reached current density by 600 million years ago, with blue-green algae as its primary source. O2 levels also increased at this time, perhaps driven by climate change at the end of a global glaciation.

Although the "Snowball Earth" hypothesis - that at least half of all ocean water was frozen solid during three or four periods of glaciation - is still controversial, there is something of a correlation in time between the geophysical evidence and the emergence of the Ediacaran fauna. As to the cause of this glacial period, it is thought to have been a concatenation of circumstances, with emergent plate tectonics as a primary factor.

How to conclude? Well, we would all like to find neat, obvious solutions, especially to key questions about our own origin. Unfortunately, the hypothesis based on the magnetic mineral evidence appears to selectively ignore the evolution of the Ediacaran life forms and the development of the ozone layer. The correlation between the end of "Snowball Earth" and the Ediacaran biota evolution is on slightly firmer ground, but the period is so long ago that even dating deposits cannot be accurate except to the nearest million years or so.

It's certainly a fascinating topic, so let's hope that one day the evidence will be solid enough for us to finally understand how and when life took on the complexity we take for granted. Meanwhile, I would take any speculation based on new evidence with a Feynman-esque pinch of salt; the universe frequently fails to match the nice, neat, parcels of explanations we would like it to. Isn't that one of the factors that makes science so interesting in the first place?

Monday 11 February 2019

The Square Kilometre Array: is it the wrong big science for New Zealand?

I've previously written about the problems besetting some mega-budget science projects and the notion that perhaps they should lose precedence to smaller programmes with quicker returns to both science and society. Of course there are advantages to long-term international STEM collaboration, including social, economic and political benefits, but there is a good case for claiming that projects are sometimes initiated without a full appreciation of the details.

Take for example, the Square Kilometre Array or SKA, the largest science project New Zealand has ever been involved with. Headquartered at the UK's Jodrell Bank Observatory (incidentally, I've been there a few times and it's well worth a visit if you're in the vicinity), twelve key nations are collaborating to construct two main arrays, one in Australia and the other in South Africa and some of its neighbours. The combined arrays will have a sensitivity fifty times greater than previous radio telescopes, allowing them to survey the sky far faster than has been done before and look back in time much earlier than current instruments.

But such paradigm-shifting specifications come with a very high price tag – and the funding sources are yet to be finalised. The €1.8 billion project is scheduled to start Phase 1 construction in 2024 and aims to begin observations four years later. Research will include a wide range of fundamental astrophysical questions, from exploring the very early universe only 300,000 years after the Big Bang to testing general relativity, gaining information on dark energy and even some SETI research.

The New Zealand contribution is organised via the Australia-New Zealand SKA Coordination Committee (ANZSCC) and is geared towards data processing and storage. The Central Signal Processor and Science Data Processor are fundamental components of the project, since the radio telescopes are expected to generate more data than the world currently stores.  As well as closer collaboration between the scientists and engineers of various nations, one of the aims of SKA is to become a source of public science education, something I have repeatedly pointed out is in desperate need of improvement.

So if this all seems so promising, why has the New Zealand Government announced that it may pull back from committing the outstanding NZ$23 million (equal to less than 10% of Australia's funding)? To date, the country has paid less than NZ$3 million. In 2015 I discussed the danger of the country falling behind in cutting-edge STEM research and Rocket Lab aside (which is after all, an American-owned company despite its kiwi founder) the situation hasn't really changed. so why did Research, Science and Innovation Minister Megan Woods declare this potential about turn, which may well relegate New Zealand to associate membership status?

The initial answer appears to be one of pure economics. Although the project is generating development of world-class computer technology, a report has questioned the long-term benefits from investing such comparatively large sums of public money. India is already an associate member while Germany has been considering a similar downgrade for some years and Canada may follow suit. The project is already  a decade behind schedule and New Zealand had hoped to be an array-hosting nation but lost out due to a lower bid from South Africa. SKA is run by a same-name not-for-profit organisation and so presumably any financial rewards are of a secondary nature (perhaps along the lines of patents or new technologies that can be repurposed elsewhere).

Interestingly, New Zealand's science community has been divided on the issue. While Auckland University of Technology and Victoria University of Wellington have objected to the downgrade, the university of Auckland's head of physics Richard Easther has support the Ministry of Business, Innovation and Employment (MBIE) decision, saying that far from providing financial and long-term science benefits (in both applied computing and astrophysical data), SKA is a white elephant, hinting that it might well be obsolete by the time it starts gathering data.

Another University of Auckland astrophysicist, Dr Nick Rattenbury, argues that the nation's public funding infrastructure is currently too primitive for it to become involved in such international mega-budget STEM projects. I simply don't know enough detail to question whether such adages as you need to speculate in order to accumulate apply here; it's clearly a well-thought out programme, unlike say the politically-motivated yet vague and probably unworkable Predator Free 2050 scheme.

If SKA was committed to solving an immediate practical problem in the fields of say, environmental degradation, food and water production, or medicine, I would probably have no hesitation in supporting it whole-heartedly, regardless of the cost to the public purse. But the universe has been around almost fourteen billion years, so I for one don't mind if it holds onto a few of its fundamental secrets for a little while longer.